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ABSTRACT 

Optimum reduction techniques have been determined and a computer 
program written to measure density, winds, temperature and pressure from 
the passive ROBIN Sphere in the 30-100 km region of atmosphere.    The 
program extends the altitude range of the 1965 ROBIN Program from 70 to 
100 km.    Output from the computer program also includes the estimated 
noise errors in density, winds, temperature,  and pressure, the frequency 
response of density and winds as a function of altitude,  and Cal-comp plots 
of the meteorological parameters. 

The smoothing techniques used in the program were determined so 
as to minimize the sum of the random and bias errors in density and winds. 
A separate smoothing function v/as determined for density and for wind 
calculations.    The densit/ smoothing function expands below 60 km in order 
to maintain a constant 2% noise error in density. 

All possible sources of error in the meteorological parameters are 
discussed.    For the first time error equations have been derived for 
temperature and pressure errors.    Error estimates are made for random 
errors,  biar errors,  and errors resulting from the initial estimate of 
temperature. 
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1. INTRODUCTION 

1.1 Areas ROBIN System 

The ROBIN system consists of a ROBIN sphere, an Areas roeket 
motor and an AN/FPS-!6 traeking radar.    The ROBIN sphere is made of 
one half mil Mylar inflatable to a diameter of one meter containing an 
inlernaJly-supported corner reflector.    Packaged in a collapsed condition 
within the nosecone of a meteorological rocket,  it is ejected at the apogee of 
the roeket and inflated by vaporization oi isopentane, to a super pressure 
of approximately ten millibars.    Thus inflated, the ROBIN sphere is tracked 
from apogee to approximately 30 kilometers by an AN/FPS-16 high precision 
tracking radar.    The Areas rocket motor is a 4. 5 inch diameter solid pro- 
pellant, end burning rocket capable of carrying the sphere payload to an 
altitude of 75 kilometers.    The FPS-16 traeking radar generates spherical 
space-time coordinates at digitized increments of 1/10 of a second.    From 
the space-time coordinates, the meteorological parameters of density, wind, 
temperature and pressure are deduced.   A complete discussion of the Areas 
ROBIN system,  its advantages and shortcomings is contained in the report 
by Engier,  "Development of Methods to Determine Winds,  Density,  Pressure 
and Temperature from the ROBIN Falling Balloon, 1965".  (Ref.  1). 

1. 2 Viper Dart ROBIN System 

In recent years the Air Force has extended the concept of the falli ig 
sphere experiment to measurements at altitudes from 70 to 100 km.    To 
implement this concept, the capability of the rocket vehicle had to be increased 
to permit sphere apogees in excess of 120 km.    Boosted-Areas vehicles have been 
utilised but,  because of their high cost,  have generally been superceded by a lower 
cost vehicle,  the Viper Dart,  developed especially for the small light-weight 
ROBIN payload.    The Viper Dart rocket (Ref.  11) was developed successfully and 
has been employed to carry the sphere to its required apogee.    Although the 
March 1965 ROBIN Computer Program gave highly accurate measurements below 
70 km,  it was not satisfactory for measurement above 70 km.    (see Ref.   2).  Hence, 
a new high altitude ROBIN program was required for measurements extending to 
100 km.    The problems encountered with the 1965 program which had to be dealt 
with in designing a high altitude program were: 

i)      The smoothing used in the March 1965 ROBIN program introduced 
a significant bias in density above 70 km. 

ii)      Above 80 km, wind accuracy decreased rapidly with increasing 
altitude. 

iii)      An examination of the adequacy of the Lambda (X) check below 40 km 
was in order.    A high altitude collapse check also had to be deter- 
mined. 



It is the purposa of this report to discuss the new high altitude data 
reduction program which is titled,  "The May-1970 AFCRL ROBIM Program1', 
explain the rationale a.id methodology used to design the program, and to discuss 
the errors in the wind» and thermodynamic data that results with the use of this 
program. 

I. 2.1        Program Specifications 

The preliminary specifications for the May-1970 AFCRL ROBIN Program 
consisted of the following items: a) the program should be optimum for measuring 
density and wind in the 70 to 100 kilometer region of the atmosphere, assuming a 
sphere apogee of 125 kilometers; b) the program should also give accurate and 
reliable density measurements from 30 to 70 kilometers; c) even though the data 
reduction technique need not be optimum for sphere apogees other than 125 kilo- 
meters,  other sphere apogees between 75 and 140 kilometers should not result 
in a serious degradation of the accuracy of the meteorological parameters; 
d) temperature and pressure accuracies should be commensurate with density 
accuracy; e) the program should accurately determine the altitude of sphere 
collapse. 

I. 2. 2       Discussion of Coordinate System 

The coordinate system chosen is a left-handed system in which the 
two horizontal directions are X (down-range) and Y {cross-range).  Looking 
down-range, the positive cross-range direction is to the right.    The positive 
clockwise angle from geographical north to the positive X-axis of the range 
coordinate system is called Z    (see Figure 1).    The azimuth angle (A) is the 
angle clockwise from the positive X-axis.    The vertical direction is Z, and 
its negative direction is toward the center of the earth at the origin of the 
coordinate system.    Hence, the horizontal X-Y plane (assuming a spherical 
earth) is tangent to the earth at the launch site.    The altitude (h) is defined 
as the perpendicular distance from the sphere to the earth. 

Figure 1:   Three-dimensional C 
of Motion. 

oordinate System used in Defining Equations 



In contrast to the coordinate system defined above, the meteorologist 
desires wind velocities with respect to the coordinate system with "h" defined 
as the vertical axis.    To determine the practical effect of the differences 
between the two coordinate  systems, winds were computed from several 
flights using each coordinate system.    The largest difference in component 
wind velocity between the two systems was 0. 2 m/sec.    Winds are initially 
computed in the original coordinate system (with Z as vertical axis) and later 
transformed to the coordinate system with "h" defined as the vertical axis. 

1. 2, 3       Density and Wind Measurement 

To obtain density,  the drag force that the atmosphere exerts upon 
the sphere must be measured.    In the 70 to 100 kilometer region,  the vertical 
velocities and accelerations are much larger than the horizontal velocities 
and accelerations.    For this reason the drag acceleration is primarily in the 
vertical direction.   Accurate density calculations are thus largely a result of 
the accuracy to which vertical velocities and accelerations can be measured. 

Horizontal winds influence the sphere's trajectory by inducing 
horizontal excursions in its path in three dimensional space.    These horizontal 
excursions are used to reconstruct the wind profile.   At altitudes above 85 km, 
the vertical acceleration also plays an important role in reconstructing the 
horizontal wind profile.    Thus,  for measuring wind,  the horizontal velocity 
and acceleration components, as well as the vertical acceleration, must be 
determined accurately. 

Since density is derived primarily upon vertical measurements and 
winds depend on vertical as well as horizontal measurements, two separate 
smoothing functions have been introduced into the program.    The first 
smoothing function is defined so as to optimize density measurements.    This 
smoothing is applied only to vertical position coordinates to obtain vertical 
velocities and accelerations.    A second smoothing function is defined so as to 
optimize wind measurements.    This smoothing is applied to horizontal 
position coordinates to obtain horizontal velocities and accelerations as well 
as reapplying it to vertical position to obtain a second estimate of vertical 
velocity and acceleration to be used in the wind equation.    The determination 
of these two smoothing functions is the critical problem in devising a 
reduction program.    The rationale a^d methodology used to define these 
smoothing functions is set forth in the following sections. 

2. DENSITY 

Density,   p,   is computed by 

m(g    - Z  - C   ) (1) 
z z 

1/2 C     A V(Z-W   ) + Ve (See Ref.   1) 
u z b  z 



where 

m     = Mass of sphere 
g      = Gravitational acceleration in vertical direction 

Z      = Vertical ac celeration of sphere 
C      = Ooriolis acceleration in vertical direction 

z 
C      = Drag coefficient 

A      = Cross section area of sphere 
V = Velocity o£ the sphere relative to the air 
Z      = Vertical velocity of sphere 
W     = Vertical wind velocity 

z 
V = Vclume of sphere 

b 

The computed density error is a result of the errors present in the 
parameters on ihe right side of Equation I.    The error present in many of the 
variables of Equation 1 makes a negligible contribution to the error in density. 

2. 1 Variables Not Producing Significant Density Errors 

The vertical component of the acceleration due to gravity (g  ) is 
computed by the equation 

8z= 

g3    (Z+r) 

(l+^)2(h+r) (2) 

where 

g    = Sea level gravvtational constant 

r    = Radius of the earth 
h    = Altitude of sphere 
Z   = Vertical position of sphere 

The accuracy of Equation 2 is sensitive only to the accuracy of the 
radius of the earth,  or more precisely,  the determination of the center of 
mass of earth.    Even if the radms to the center of mass of the earth were 
in error by 10 kilometers,  the resultant error in density would be less than 
1/2% at an altitude of 100 kilometers and much less at lower altitudes. 

The mass of the sphere (m) is determined for each sphere individually 
by the manufacturer.    The accuracy of the mass thus obtained should be to at 
least 1/2 gram.    For a nominal spnere mass of 120 grams this would result 
in less than 1/2% density error. 



Manufacturer's specifications for the ROBIN sphere demand that it shouH 
deviate less than 1% from a perfect sphere.   A 1% error in diameter produces a 2% 
error in A and thus a 27c bias in density.   An error in either diameter or mass would 
not effect the shape of the density profile but only translate it in some direction.  This 
results because the error in diameter or mass is constant for the entire flight.    Thus, 
to a first order approximation, a constant bias results.    However,  if mass should vary 
due to a gas leak, the bias error would not be constant. 

From 30 to 100 kilometers the bouyancy (V  g  ) and coriolis (C   ) terms 
make only minor contributions to the determination of density.    Hence,  any error 
present in these terms gives negligible contribution to density error. 

The remaining variables which could make a significant contribution to 
density error are C   .  A,  2,  W  ,  and V. 

D z 

2. 2 Density Error Equation 

For the purpose of deriving an error equation for density, the density 
equation can be simplified to Equation 3 

m(g_-Z) 
P = (3) 

1/2 C„ A V (Z-W  ) 
D z 

where both the bouyancy and coriolis forces have been neglected. 

Considering the error in density tc be a function of the errors in 
C    . yfz, Z,   Z,  and V.    The error increment in density due to errors in th 

parameters is given by the differential approximation formula as 

^ = It   ^D +lf *> *& ^ + & ^ ^ ^ '*' 
•L) Z 

Each of these six terms can be analyzed to determine the magnitude of its 
contribution to the error in density.    Since CJ-J, W   and errors in V (primarily a 
result of horizontal wind errors) are essentially independent, they can be analyzed 
individually.    Errors in Z and Z are not independent due to the smoothing process. 
Thus, the terms containing ^ and Z must be considered together.    The following 
sections describe the error terms and provide means of estimating their effect on 
density accuracy. 

2. 2. 1        Drag Coefficient Error Term 

The percent error in density in terms of the percent error in C^ is 
given by the error variance formula     a 

P \       / c 
2 D 

.)       / 2- )        (See Appendix A) 
P '     ^cD 
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a)    Error due to Drag Table 

Since the accuracy of the drag coefficients cannot be determined 
precisely, it is impossible to give an exact error variance value for 
the resulting per cent error in density.   The accuracy of any 
individual drag table in the literature today is suspect.   There are 
several experimenters, Aroesty (Ref. 3), Ashkanes (Ref. 4), 
Heinrich et. al. (Ref. 5 and 6), and Goin and Lawrence (AEOC) 
(Ref. 7) who have measured drag coefficients for a passive sphere. 
The inconsistencies of results obtained by these experimenters have 
been pointed out by Luers (Ref. 8) and others.   Until further 
concentrated effort is supported by interested parties, the accuracy 
cf any drag coefficient presently in use is not known, and probably 
varies for different sections of the tables.   As a result, the density 
error due to drag coefficient error cannot be determined directly 
and will probably vary over different segments of the flight. 

The drag table to be used in the High Altitude ROBIN Program 
appears as figure 2 and is basically the work of Heinrich (Ref. 5 and 
6) in the supersonic section, and of Arnold Engineering Develop- 
ment Center (Ref. 7) in the subsonic region.   The low Reynolds 
number (< 50) high Mach number drag coefficients were taken from 
Potter and Miller (Ref. 9).   The impressive aspect of this drag table 
is the similar shapes of the CJJ curves given as a function of Mach 
and Reynolds number even though the drag table was the result of two 
independent researchers using two different techniques for calculating 
drag. (Heinrich used a stationary sphere in a wind tunnel; Lawrence 
and Goin used a ballistic range).   However, even though this drag 
table shows smooth, consistent drag curves, it is impossible to quote 
specific accuracies of the drag table because of the interpolated section 
of the table.   The etated accuracies by the experimenters are as 
follows:   Lawrence and Goin subsonic, approximately 2%; Heinrich 
supersonic; maximum possible error ranges from ±2. 37% to ±27. 9% 
depending on Reynolds number.   However, actual errors are usually 
not the maximum possible.   By interpreting Heinrich's maximum 
possible error as a So* error and by extrapolating Heinrich's and AEDC 
error values in the interpolated section of the drag table a crude 
approximation to Cj) error as a function of sphere altitude was 
derived for a sphere with apogee of 125 km.   The results are as 
presented in Table 1. 

As of this writing a very comprehensive sphere drag determination 
program is being undertaken at AEDC for AFCRL which will cover 
broad areas of interest for both the ROBIN and accelerometer equipped 
spheres.   When the tests are completed, it is expected that further 
analysis will indicate the need to modify the values of CQ used herein. 
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If so a new table of C   will be incorporated into the High Altitude 
Program.   At that time the error in density due to the error in C^ 
will be re-evaluated. 

TABLE I 

Approximation to Percent Error to CJJ -v« - Altitude 

for a Sphere with Apogee 125 Km 

Sphere Altitude - Km % Error in CD 

100 10 

95 8 

90 6 

85 3 

80 1 

75 2 

70 6 

65 4 

60 3 

55 and btlow 2 

b)    Error due to Initial Estimate of Temperature 

In addition to the error in density due to the inaccuracies of the 
drag table, a density error also results from the error in the initial 
estimate of temperature. 

At the first point of density computation an initial estimate of 
temperature (or pressure) is required (see Ref. 1).   The error in the 

initial temperature produces errors in succeeding temperatures that 
decrease in magnitude.   These temperature errors produce errors 
in Mach number and Reynold's number since both are functions of 
temperature.    Consequently, an error in C    and density results, xhe 
magnitude of the resultant density error depends upon the magnitude of 
?ae initial error in temperature and the shape of the drag curves.    The 
shape of the drag curves is important since this determines the change 
in C    resulting from a given error in Mach and Reynold's numbsrs. 

The density error profile due to a 10% error In the Initial 
estimate of temperature is presented in Table 2.    Table 2 was 
derived by first determining the trajectory of the ROBIN Sphere 
assuming It fell In the 1962 Standard Atmosphere (I. e., Standard 
Atmosphere density (pM62ll) and temperature (T,,,   „) from a 125 km 



apogee.    Using this trajectory as if it represented a radar track, 
temperature, density and pressure were computed using the 1965 
ROBIN Program.   A ±10% error in the initial estimate of temperature 
was introducMi* by taking TQ = I. IT..^" *nd TQ = . ^TM^J»» ****** 1°***** 
point of computation.   As seen from Table 2, the resultant error in 
density becomes less than 1% after approximately 4 km of flight. 

Tabl« 2: 

PercenH Er»?* in Density 
Resulting from « 10% Error in She Initial Temperatare 

ALTITUDE-KM 

1  100 95 90 85 <85                      | 

^(loqj    4 0 .8 .3 .1 Less than 0.1% 

2.2. 2 Relative Velocity (V) Error Terms 

The percent error variance of density as a function of the error in 
relative velocity    V= [   (X - W_)   + CY Wy)2 + (Z wz)' ] 1/2 is 

w (5) 
(See Appendix A) 

The variables X, Y, W ,W   and V are basically dependent upon 
a) the sphere apogee, b) the horizontal velocity imparted to the sphere by the 
rocket, and c) the wind field experienced by the sphere.   Since these variables 
change from flight to flight. Equation 5 was evaluated using the values of these 
variables from a representative flight with sphere apogee 125 km.   o-      and o- 

w w 
were each taken to be 10 m/aec above 70 km and less at lower altitudes.    Later^ 
in this report it will be shown that the mean wind' profile can be measured to an 
accuracy in excess of that used in deriving Table 3.* Table 3 shows the percent 
error in p resulting from horizontal wind errors.    The table indicates that the 

♦If a high frequency(wavelength <5 km) large amplitude (in excess of 10 m/aec) 
wind structure exists above 70 km, then the smoothing filter used for determining 
winds will not see these waves and actual wind errors may exceed 10   m/sec 
for these high frequency waves.   However,  such large wind errors will not result 
in the density errors that would be predicted by Equation 5, since the density 
filter will compensate by not allowing the resulting ficticious density waves 
derived from the wind error to pass. 
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mayimum error in density is only 1.1% end occur* at 701cm.   Actually, the 
1.1% estimate at 70 fan is undoubtedly too large since the horizontal wind errors 
at 70 km are generally much less than 10 m/sec.   Hence it can safely be 
stated that for the entire altitude range from 30 - 100 km, the error in density 
resulting from the inaccuracies of the horizontal wind measurements is less 
thanl%. 

Equation 5 also shows the need for computing horizontal winds at all 
altitudes at which density is computed (i. e. Density calculations should 
commence at the ssrae altitude as horizontal winds or higher).   For if hori- 
zontal winds are not computed and taken to be zero, a 100   m/sec   horizontal 
wind could induce a 10% error in densitv. 

TABLE 3 

Density Error ResnttiBg from Horlsontml Wind Errors of 10« S,«ad 2 m/sec 

Attitnde 
fan 

• 
X 

From VIPER DART 13 
W,             T                   Wj 

• 
Z 

Wind Error 
% Density 

Error 
(op/pMlOO) 

ICO 279 -56            -98              -71 -510 10       10 .89 

90 252 -43            -99               -18 -626 10      10 .6 

80 172 - 3            -64               - 1 -5S9 10      10 .5 

70 11 -68            -29               -40 -26^ 10      10 1.1 

60 -83 -80            -38               -37 -156 5        5 .05 

SO -71 -70             -29                -34 -100 5         5 .25 

40 -46 -46             -32                -31 - 41 2         2 .1 

30       ' -39 -39             -21                -22 - 14 2        2 1.1 

2. 2. 3      Vertical Velocity and Acceleration Error Terms 

Two types of errors are present in velocity and acceleration 
measurements when a smoothing process is employed to obtain these 
measurements:   noise error and bias error.     The noise error is the error 
resulting from the noise present in the radar coordinates.   A bias error 
results when the smoothing function does not adequately represent the true 
path of the sphere.    The error in density due to the noise and bias errors in 
velocity and acceleration is given by the terms 
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z*.    *     .,..     * * 
(6) 

(See Appendix A) 

where A^, At represent the bias errors in vertical velocity and «eceieretion. 
The first two terms of Equation 6 are the noise error terms and the third 
term, the bias error term. 

a)    Discussion of Variables in Equation 6 

Ths noise error in ▼«rtical velocity («*•) and acceleration («r") 
depend upon the noise present in the radar coordinates (s ), the typo of smooth- 
ing technique Used (polynomial of degree P), the number of data points used in 
the smoothing process fJ), and the time spacing between consecutive d»t£ points 
(At).   Of these four variables, two are dependent upon the radar being used. 
For example, for an FPS 16 radar, o-   varies between 10 and 15 meters, depend« 
ing upon slant range and tracking conaitions, and At is generally fixed at 1/10 
of a second.   The other two variables, the degree polynomial and the number 
of data points are arbitrary and will be chosen in such a way so as to minimize 
Equation 6.   The values of Z and Z in Equation 6 depend primarily upon the 
sphere apogee, but are also affected to a much lesser degree by atmospheric 
density.   If a balloon flight in_the 1962 Standard Atmosphere from a given 
apogee is assumed, then the Z and Z computed from this theoretical flight 
will be very nearly the same as that of an operational flight having the same 
apogee, since deviations of the ac.        '.tmospheric profile from the 1962 
standard will have a negligible effect on sphere velocity and acceleration, (the 
notation Pi./2» w^ refer to the density profile of the 1962 Standard Atmosphere). 

The bias errors in velocity and acceleration (A2, A2) depend upon 
N, At, the degree polynomial, and the true position   Z vs t  of the 
sphere.   The true position path is primarily a function of sphere apogee, and 
only secondarily dependent upon the deviations of density from a standard atmos. 
Since the true position field of a passive sphere is never known, some 
assumption must be made so that the bias error term can be evaluated.   A 
representative position field can be obtained for the sphere assuming that the 
sphere fell in the 1962 Standard Atmosphere from a given apogee.    Using this 
assumption, the next section will describe the technique for evaluating the 
bias error in density. 

b)     Estimation of Noise and Bias Error Terms 

Equation 6 has been determined to be a function of N, At, degree 
polynomial, and apogee.    The problem to be solved is: determine the N,degree, 
and apogee that will minimize Equation 6 in the 70-100 km region,, assuming a 
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known radar error and a known sample rate (At).   For the passive sphere 
system, an FFS 16 tracking radar is assumed, with RMS error of 15 meters 
in the Z component, and a sample rate of 2 per second (At = 1/2 second).   In 
actuality, FPS 16 data is generally digitised in 1/10 second intervals.   However, 
to obtain independent measurements and to minimize the data handling problem, 
five 1/10 second data points are averaged, producing independent 1/2 second 
data points. 

Estimation of Noise Error Terms 

There are two methods of estimating the noise error terms: a)examining 
an actual flight of a passive sphere tracked by two identical FPS 16 radars and 
b) using equations which directly relate «r. and «r- to N, At, v , and the smooth- 
ing function.   In method a, densities are calculated from each set of radar data 
using the same number of points (N), and degree of smoothing polynomial (P). 
Since the same bias appears in the density computations from each of the two 
radar tracks, calculation of the RMS difference between the densities as s 

obtained by the first radar and those from the second radar determines the noise 
error terms.   The equations of method b are presented in Figure 3 and derived 
in Appendix B.   As seen in Figure 3, the form of the noise error expression 
is determined by the degree (P) of the smoothing polynomials     used.   Linear 
polynomial smoothing is defined as fitting a linear polynomial over N data points 
and assigning th«> slope of the fit to be the velocity at the midpoint/N+l \ of the 

interval.   Linear-linear smoothing to obtain acceleration is described as 
fitting N position points to a linear polynomial to obtain velocities and fitting M 
of these velocities by a linear polynomial to obtain acceleration (see Ref. I). 
A cubic -linear fit is described as fitting N position points to a cubic polynomial, 
taking the slope at the midpoint as the velocity, and fitting M of these velocities 
by a linear polynomial to obtain acceleration.   The method is similar for cubic- 
cubic and linear-cubic smoothing techniques.   (Second and fourth degree poly- 
nomial smoothing result in the same slope at the midpoint of the interval as 
does the first and third degree smoothing, respectively.) Quadratic smoothing 
is defined as fitting a second degree polynomial to position points, ard 
evaluating the first and second derivatives of the polynomial (at the midpoint) 
as the velocity and acceleration,  respectively.    The validity of these formulas 
has been established by comparisons with RMS errors which were obtained by 
method a. 

Estimation of Bias Errors 

For a given apogee, bias errors can be determined by the following 
technique (see Figure 4).   Given a drag table and sphere apogee, the equations 
of motion can be integrated to obtain the theoretical path of the sphere, assuming 
1962 Standard Atmosphere. The vertical position Z, velocity 2, and acceleration 
Z are determined by the theoretical trajectory program.    The Z position 
coordinates (Z,t) are now tre \ted as radar data and the smoothing routine is 
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Figure 3:   Noise Error Formulas for Polynomial Smoothing. (Derivations 
Given in Appendix B) 
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applied using N data points and the degree polynomial F.   The smoothed Z, Z, 
and Z coordinates differ from the theoretical Z, Z,and Z coordinates only 
because of the bias error resulting from the smoothing technique.   (No noise 
has been introduced into the data.)  The smoothed coordinates are then re-sub- 
stituted into the equation of motion, using the same drag table, and density is 
computed.   The only difference between this computed density and the original 
input density (1962 Standard Atmosphere Density) is due to the bias error 
induced by the smoothing function.   The percent bias error in density is then 
determined as the ratio of the computed minus the standard density to the 
standard density. 

c)       Determination of Optimum Smoothing Technique 

The optimum smoothing for determining density is defined to be 
that smoothing of vertical coordinates that minimizes the sum of the noise and 
bias error variances in density (i. e. minimizes Equation 6).   The determination 
of the polynomial and interval that minimizes Equation 6 in the 70-100 km region 
was derived by employing the above techniques.   Initially, an escape altitude 
of 125 km was chosen.    For each type double smoothing (linear-linear, cubic- 
linear, linear-cubic, cubic-cubic), the total error in density due to velocity and 
acceleration errors (Equation 6) was computed for all possible combinations of 
N and M.   The noise error was calculated by method b (the formulas), as given 
in Figure 3, using At  = 1/2 second and «r   = 15 meters.   The bias error was 
computed as described by Figure 4.   Figures 5-8 are examples of the total 
error plots that were generated.   The plots Indicate the percent bias error (the 
deviation of density ratio   from 1) and the Itr confidence bands of the noise error 
about the bias.   Careful analysis of total error plots for all combinations of 
degree polynomial (double smoothing) and N and M resulted in the choice of the 
19-21 linear-cubic combination as optimum. 

Total error plots were then generated in the same fashion, using a 
quadratic polynomial fit and its first and second derivatives for velocity and 
acceleration.    The best smoothing interval for using a quadratic was determined 
tD be 31 data points (Figure 9).   In comparing the optimum quadratic and the 
optimum linear-cubic smoothing techniques,  it is easily seen that the 19-21 linear- 
cubic produced significantly better results in the 70-100 km region.    The probable 
explanation for this is the following.    By fitting two different functions,  one to 
get velocity and the other to get acceleration,  it is possible to partially compen- 
sate for,  say,  a positive bias in density due to a velocity error,  by using a 
different degree polynomial or different interval to generate accelerations which 
will produce a negative density bias.    This advantage is not present when using 
a single function for smoothing. 

The decreased density accuracy below 60 km for the 19-21 linear- 
cubic is due to the slower vertical velocity of the sphere which results in the 
constant time smoothing technique applied      over a shallower layer of altitude. 
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Figure 8:  Bias and Noise Errors in Density for 49-U Cubic-Cubic Smoothing 
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Figure 9: Bias and Noise Errors in Density for 31 Point Quadratic Smoothing 

This situation was alleviated by expanding the position smoothing interval from 
19 points at all altitudes above 60 km to a maximum of 51 points at approximately 
35 km in such a fashion as to maintain a 2% noise error in density. 

The 19-21 linear-cubic smoothing interval was next evaluated for other 
sphere apogees from 70 to 150 km, and the noise and bias plots were generated. 
As anticipated, an increase in sphere apogee resulted in higher velocities and 
accelerations experienced by the sphere at a given altitude, which increased 
the bias error in a measured density.    Conversely,  from observing the noise 
error terms,  it is seen that an increase in velocity and acceleration results 
in a decrease of the noise error.    In calculating the total error in the 70 to 100 
km region for the various apogees,  it was determined that the 125 km apogee is 

18 



most practical (See Table 4).   Not only ie the total error one of the smalleet 
at every altitude, but from the logistic standpoint, the 125 km apogee .s more 
easily obtained by available rocket hardware systems than higher apogees. 
The actual noise and bias errors in density for the various apogees are found 
in Table 4.   This data verifies the requirement that serious degradation of 
density accuracy does not result for other apogees. 

Tab!« 4 
Percent NeiM, Bta*. mud ToUl Error in Oaiwity for Sphara Apofooa from 70 M ISO Km. 

100 18 90 
ALTITUDE - 

|5  
-KM 
___wi _JL J L a j ^70 _ 

Naiaa-     , 
Bias TOU' 

Nol•• Toul 
Biaa   ,0,•1 

NoU* Toul Biaa    T•,•I ;«•"«- AT'- Biat  TO", IST'"*' Hot"* Total BUa I"," 

r .;  " ,1, * ,!    • «:; - 
.5      . 

-1 .!   ■•• *        2 

m  140 4    " .; •. .!•'  • 
•5      2 

-l.S      * 
.5      . 

♦.5 .1.. ' *        2 

1.« 
.!    " ,■••      4.. A   ' .,:; » •1            ',ä> .!•' - 0      2 

s us It   " .; " .;  " .5    • .'.. ■ l               •• 9 .'J '•' 0      2 

100 s » ♦■ JJ A   " i   • i             i« 5 .':5 ■■• 
2        2 

90 
«'    • .J   " l.t    . . 

. .5      '■' .':! " 0       2 

M 
*!    '■' .':! ■■' 

2        2 

70 
: « 

Tetol Error  .  [Noiaa1 + »Ua»] 

2. 2. 4 Vertical Wind Error Term 

The density error variance resulting from vertical winds is given 
by the expression 

2 2 
Ap 2AW 

(-)=(-r) (7) 
(See Appendix A) 

To a falling sphere, a vortical wind appears identical to a change in 
density.   As a result, a data reduction program cannot distinguish density 
perturbations from vertical wind oscillations.   In order to compute densities, 
an assumption must be made concerning either vertical winds or density per- 
turbations in the atmosphere. 
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Assumption A 

Assuming no vertical motions in the atmosphere, Equation 1 can be solved 
by substituting W =0 on the right side of Equation 1 and evaluating all other terms 
by conventional means.   Under this assumption, any vertical winds present in 
the atmosphere will appear as density perturbations.   The relationship between 
vertical winds {amplitude and wavelength) and density perturbations is exhibited 
in Figure 10 for a sphere apogee of US km.   Figure 10 also contains the effect 
of the 19-21 {expanding to 51-21) linear-cubic smoothing filter on ♦he vertical 
wind.   An example will clarify this effect. If a sinusoidal vertical wind of wave- 
length 2 km with amplitude of 1 m/sec is present at 50 km, then this vertical 
wind would be damped by the smoothing and appear as having amplitude 0. 52 
m/sec (obtained from Figure 11).   Since the program attributed the 0.52 m/sec. 
vertical motion as a density perturbation, the result of the actual 1 m/sec. 
vertical wind would be, using Equation 7, a I. 3% density perturbation as shown 
in Figure 10.   The density error introduced by a vertical wind of amplitude 
X m/sec. is obtained by multiplying the error introduced by a 1 m/sec. vertical 
wind by X. 

zo     iu      b i 

Wave length km 

Figure 10: Density Error Produced by a Vertical Wind of I m/»ec - 125 km Apogee 

Assumption B 

If density is assumed to follow some mean path, then perturbations 
from this path can be attributed to vertical winds.    Since density varies 
exponentially with altitude, a mean exponential path is appropriate. 
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* 

Using this assumption, vertical winds can be computed by the equation 

Z -Z 
«-   s   mean 

z A        CLz 
2KZp e 

A description of the variables in this equation and its application is given in 
Reference 1. 

Since, according to present knowledge, meteorologists accept density 
perturbations at least as much as they accept vertical winds, Assumption A, 
that is Wz s 0y has been incorporated into this program.   The magnitude of 
vertical winds in the upper atmosphere is not yet well substantiated.   Consequently, 
significant density errors may result when using this assumption if the vertical 
winds exceed a few m/sec (See Figure 10). 

2.3    Summary of Density Errors Using Optimum Smoothing 

The total percent error in density resulting from a computation using 
the High Altitude ROBIN program with optimum smoothing cannot be precisely 
determined because of the unknown accuracy of the drag table and the occurrence 
of unknown vertical winds.   The drag table has been taken from the work of 
Heinrich in the supersonic mach number regime, and from Lawrence and Coin 
in the subsonic, with values interpolated and extrapolated between these two drag 
tables when necessary.   The accuracies specified by the experimenters are: 
Subsonic,   ±2% RMS error; and supersonic maximum possible error, from ±2. 3% 
to ±27.9%, depending on Reynolds number. 

I The vertical wind error depends upon the magnitude of the vertical wind 
and the altitude at which it appears.   A 2 m/sec., 10 km vertical wind will 
result in a density error less than 2% above 70 km; however, at an altitude of 
40 km, the same 2 m/sec. vertical wind will result in a 9% error in density. 

The error in density due to errors in horizontal winds and velocity is less 
than 1% at all altitudes. 

The error in density due to a 10% error in the initial estimate of temperature 
becomes less than 1% after 4 km of flight data. 

The other contributing terms to density errors have been accurately 
determined for the 19-21 linear-cubic (which expands to a maximum 51-21 at 
35 km) smoothing.   The noise error in density is less than 2% to 90 km and 
less than 8% to 100 km, and the bias error is less than 1% to 70 km and a vary- 
ing bias from lto5% from 70 to 100 km.    The amount of detail in the density 
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that passe« through the linear-cubic filter is determined by the frequency 
response curves (Figure U).   For s given wavelength of a density oscillation. 
Figure U can be used to determine the percent of the amplitude of the oscillation 
that will filter through the reduced data as a function of altitude.   As seen 
in     Figure 11, wavelengths less than 10 km are largely damped by the smooth- 
ing at altitudes exceeding 70 km. whereas below 70 km wavelengths of the order 
of 5 km are easily observed. 

Vlfw« II: Dmwltr ftmt/mmef RMFMM (wr CiqwaMtg W-ö LtaMfCiMc tin »»«lit 

2.4 Density Validity: Sphere Collapse Checks 

Density data is defined to be valid if the sensing sphere is properly 
inflated.   A collapseior elongated sphere will result in highly ficticious density 
measurements.   Two checks are used to determine proper sphere inflation: 
A time of fall check and a density gradient check (Xcheck). 

2. 4.1      Time of Fall Check 

Experience with the Areas ROBIN System has shown that a collapsed 
sphere falls with a noticeably slower vertical velocity than does an inflated sphere. 
As a result, it is generally possible to determine sphere collapse by comparing 
the fall velocity of an actual sphere to the estimated fall velocity for an inflated 
sphere.   Estimated fall velocities for the ROBIN sphere have been obtained 
from computer simulated flights assuming the 1962 Standard Atmosphere and 
±20% deviations in density from the 1962 Standard Atmosphere.    The times of 
fall   for sphere apogees between 150 and 70 km is given in Table 5.   Above 80 km 
the time of fall is strongly dependent upon the sphere apogee.    In certain cases 
an error of a few km in determining sphere apogee could change the estimated 
time of fall more thain20% deviation in density from the 1962 Standard Atmosphere. 
For this reason, the time of faU test is not used above 80 km.    The altitudes 
where the time of fall test is used for each sphere apogee is indicated by the 
heavy lines of Table 5.    If the time of fall of an actual sphere does not lie 
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between th&t estimated for a spheve falling through an atmosphere whose density 
is 0.8 Pilz*» aa^ *■ density of 1.2 ?»/• ?„ sphere collapse is indicated. 

The performance of the time of fall test has been evaluated for numerous 
flights with varied apogees.   In Figure 12 a comparison is made between collapse 
as indicated by the time of fall test, the X check (discussed in section 2.4. 2), 
and observations of the density ratio.   Experience has shown that a sharp increase 
in the density ratio over a few kilometers is associated with sphere collapse. Of 
the 14 flights that were investigated, the time of fall test accurately determined 
collapse on 12 flights.   On the other two flights the time of fall test was apparently 
5 to 10 km premature.   The time of fall test can only pinpoint collapse to within 
S km. If collapse occurs near the bottom of the test layer it may not vary the time 
of fall sufficiently to detect collapse until the next 5 km test layer.    For this 
reason the time tolerances which indicate collapse are quite restrictive.   For 
spheres that never inflated or spheres whose collapses is obvious (by the three 
tests}, the time of fall greatly exceeds the allowed tolerances for inflated spheres. 

TABLES 
Time of Fall in Seconds Through Stawtotd Atmotpber« 

and ±20% Deviation from Standard for Sphere Avsgees Between 7C and ISO Km 

Apogee 
Altitude       ! 

ALTITUDE BANDS" Km 

m-vt w-wj to.tt | »-to tt-w M-M S*-4» 4f^t *».K »•»{ 
•■*• i« It  1 it 4» » 44 H M IM 1 t 1 

IMk» ,„ it 11 11 4t »T   • 1 *♦ H 142 . 1 t 1 

k*»« it u   | 14 M M M 14 IM lit I« 1 

■•*<• i Ii » 
IMkm »U it u U 
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From Figure 12 this is apparent at all altitudes and is a strong arguement to 
support the validity of the sphere collapse check.   A debatable point is whether 
the tolerances should be increased slightly at the expense of occasionally 
determining collapse 5 km too late. 

2.4.2 Density Gradient Check (X check) 

Engler (Ref. 1) has shown that below 60 km the density gradient can 
be estimated by V defined as: 

X = 
Z   - Z 

2       1 
( Log £2) - Log &{>)* 

I    dp 
p   ds (8) 

An estimate of the value of X one would anticipate for an inflated 
sphere is determined by observing the density gradient^    dp  of the 1962 

p    ds 
Standard Atmosphere.   If the sphere is properly inflated, then the calculated X 
should approximate this density gradient.   A collapsed balloon will result in 
incorrect density data and consequently Xwill deviate considerably frr "n its 
anticipated value.   To allow for real changes in the density gradient <rt  he 
atmosphere from the 1962 Standard, the change inJL_   dp    due to a 15% perturb« 

p     dz 
ation in the density ratio     .  p      . over a 5 km layer (Figure 13) has been 

62" 
calculated and is presented in Table 6. 

1.15 1.0 

Density Ratio      4 

.85 

Figure 13:  Density Profile of 15% Decrease in Density Ratio per 5 km 
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Table 6 «hows the density gradient of the 1962 Standard and the change occoring 
in the gradient due to a ± 15% perturbation per 5 km. 

TABLE« 

Density Gradient of "62" St»ad«rd AtmMphcre 
«ad Chances Produced by *IS% Denfity Fertorbatlon Per S KU 

(i© « Std. htm. 
gndlcBt for -15%             gndieat for 415% 
I^ertnrteHoa in density pertarlwtioa in density difference 

60.S5 .00012 .00009                           .00015 1.00003 

SS.50 .00013 .00010                            .00016 1.00003 

H)-4S .00014 .00011                             .00017 1.00003 

45-40 
40.35 

.00015 

.00916 
.09012                            .00018 
.00013                            .00019 

1.00003 
1.00003 

35-30        .00015 .00612 .00018 .   1.00003 

From observation of Table 6 au anticipated value of X = . 00014 was 
chosen and a tolerance of */)0005 allowed for density perturbations in the real 
atmosphere. 

In addition to allowing a tolerance in X for real density perturbations 
a tolerance must also be allowed for the inaccuracies of the parameters used 
to compute X. 

It can be shown that errors in a calculation of X are primarily a result 
of errors in the velocity me&surements ( Z  and £)    rather than the position 

measurements (Z- and Z.).* 

Considering errors in X as a function of velocity errors, the error 
variance formula for X is derived as follows 

AX = ^   Az,   +4£- Az, 
az 2     az,        1 

2 0   1 (9) 

AX 
Z2"Z1      ^2 ^l 

Sinca the program is designed to maintain a constant percent density 
error (•££-)   of , 02 below 60 km,  it is desirable to transform Equation 9 into 
terms of   Ap _ 

P 

* Z^ and Z   are the respective first and last points of the position smoothing interval. 
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Assuming p = ce      an approadmate «olution to the equations of 
motion yields 

Z=(f)1/2    .^M-t-fV'2       (S..Ref.l) 
kc 

where g, k, and c are constants defined in Reference 1. 

The error increment in Z is approximated as 

Az = 1/2    Ap 

-■Ir—^^ 
Thus 

-^= 1/2   -^.• 
2 P 

Substituting (10) into Equation 9 yields 

(10) 

A3t = 
^l 

Ap 
L) (U) 

Taking the variance of both sides of Equation 11 and recalling that Ap  is 

maintained constant below 60 km, gives p 

Thus 

m 
VAz W (12) 

where 

Az = Z, - Z, 
2        1 

For a——=. 02 the noise error in X becomes 

o-. _ .02fT _   . 028Z8 
Az Az 
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The 30- noise error tolerance for X is 

.08484 
3<r, 

X Az 

The X check is summarised as follows: 

Expected value of X= . 00014 
Tolerance for variations in density ± . 00005 
3o- noise tolerance   .. 08484 

Az 

A sphere is considered inflated if 

00014 ^.0005)2
+(l^4 i^<-«0OM  W(.00005)2 + (^i7. 

The performance of the X check is evaluated in Figure 12.   For 9 of the 
14 flights the collapse altitude as determined by the X check is in excellent 
agreement with the collapse altitude as indicated by time of fall and the 
density ratio.   For these cases  the X check appears to determine the collapse 
altitude to within I km accuracy.   For the other flights the X check generally 
indicates collapse several kilometers before the time of fall check .   This is 
not caused by radar noise but is undoubtedly the result of an interesting 
meteorological observation; either a vertical wind or density perturbation. 
For this reason the X check should be interepreted in conjunction with results 
of time of fall test.   The time of fall test is the primary determination of 
collapse.   The X check serves to verify the performance of the time of fall 
test as well as pointing out interesting meteorological phenomena. 

3. WINDS 

The equation used for computing wind with the falling sphere method 
is given as 

g   V. p 
. /•      ~ x    b    , (Z - W      X + C    -g — ) 

i,                  z               x       x         m . (13) 
W    =X-- g    Vu p  K    ' 

Z + C    -g    -   
z       z m 
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The error present in a wind computation is  a result of the inaccuracies 
of parameters in Equation 13.   The inaccuracies of several of these parameters 
have a negligible effect upon the wind accuracy. 

3.1 Variables Not Producing Significant Wind Errors 

The errors in computing g , the gravitational acceleration in the 
direction perpendicular to the tangent plane, is less than . 0004 m/sec .   This 
error is negligible when compared to the larger error in measuring 2 .   The 
error in g   is approximately If 10 the magnitude of the error in g , and for the 
same reason can be ignored. 

The Z component buoyancy term,  p V,  g /m is very small (approximately 

. 006 m/sec ). The error In computing this term is many times smaller than the 
term   itself and is negligible when compared to other larger error terms.   The 
error in the X-component buoyancy term p V.  g /m, is approximately 1/10 the 

magnitude of the error in the term p V. g /m, and similarly can be ignored 
when investigating wind accuracy. % 

For a ROBIN sphere with apogee 125 km, the coriolis acceleration 
component C   has approximate magnitude. 09 m/sec    at 100 km,   . II at 95 km, 
and . 11 at 90 km.   Depending upon the magnitude of the denominator of Equation 
13, C   can make a large contribution to wind measurement.   If ignored, the 
corious acceleration at 100 km would result in a ficticious horizontal wind of 
magnitude 40 m/sec; at 95 km, a ficticious horizontal wind of 19 meters per 
second; and at 90 km, a wind of 10 m/sec.    Hence, the accuracy of C   must be 
investigated.   C   is computed by equation 

C    = 2 w(zcos 0    + Y   sin o) (14) 
x N ' 

where 

6  = latitude 

_5 
W = rotation rate of earth = 7. 29 x 10     radians per sec. 

The error in C     is a result of the error in Z.    For example, if Z were in error 
x 

by 10 m/sec, the resulting error in C   would be only . 0014.    Since this is at 

least an order of magnitude less than the error in X, it is not a significant 
source of error in wind calculation.    The error   in the vertical coriolis 
component C   is approximately 1/10 the error in C .   Consequently, errors in 

Z X 

both coriolis components of acceleration are not significant sources of wind 
measurement error. 

The effect of vertical winds on horizontal wind measurements depends 
upon the altitude of the sphere.    Table 7 shows the magnitude of errors that will 
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result from a 5 m/sec and 1 m/sec vertical wiad as a function of altitude. 
The errors may get as large as a couple of m/sec at 100 km.   The remaining 
variables in Equation 13 which may contribute significantly to wind errors are 
the horizontal and vertical components of velocity and acceleration. 

Allilud« 
km i W, 

100 • 500 

90 -62$ 

M .»0 

70 -250 

60 .160 

so ■ 100 

40 . 41 

M .  14 

TABLE 7 

Rcprcccntatim Values of HorisonUl Wind Error 
Kecultiiif from I and 5 m/ooc Vorlieal Wind« 

W   » 5 m/ooc 

. _ t-Wj Roprooentativ« Valoo 
Z ofQ   *•• botow Error to W. 

.01 

.008 

.01 

.02 

.03 

.05 

.12 

36 

250 

200 

)60 

100 

5 

1 

.05 

.04 

2.5 m/«oc 

1.6 

1.6 

2.0 

.15 

.05 

.007 

.014 

W   * 1 m/ooe 

Allilinte 
km 

I . Z-W. 
RapreoenUtiv« Valoo 
of vj aco bolow Error in W, 

100 

90 

•0 

70 

60 

SO 

40 

30 

-500 

-625 

•550 

-250 

• 160 

-100 

• 41 

-  14 

.002 

.0016 

.0018 

.004 

.0062 

.01 

.024 

.071 

250 

200 

160 

100 

5 

1 

.06 

,04 

.5 

.32 

.2M 

.4 

.03 

.01 

.002 

.003 

o refer« to the term 
(k-W.nxtC-g.. ■    m    ) i -W 

» + C, -fiVglU 
*< ia the percent error 

In/    \ reaulting by assuming W   : 0. 
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3.2 Wind Error Equation 

Having retained only those error components which are the predominant 
source of error in a computed wind, the wind equation simplifies to 

W   =X 

The first order of approximation to an error in W   resulting from the 
errors in the parameters is given by Equation 15 

dw   = di 
x 

Z 
Z-g 

di*  .   .* 
Z-g 

dz ■j-    ^ Z     _    ... ■■ 2   dz 
(Z -g) 

(15) 

If the differential error components are considered as random noise error with 
normal distribution, then by taking the variance of Equation 15, the noise error 
in a. wind calculation is given by Equation 16 where cr., «r.. , etc. are the noise 
errors in velocity and acceleration due to the noise m the radar data 

= 'i  +(T-) 'i- *(#-)- ^(^-jf x        \Z-g/     x        VZ-g /     z       V(Z-g)2/ (16) 

To determine the bias in a wind measurement resulting from the biased (over- 
smoothing) velocity and acceleration measurements, Equation 15 is again applied. 
Considering the component differentials as the bias error, the square of the 
bias wind error is given by Equation 17. 

Aw X Z [Ax. ^-    Ax   - JL.    Az   + JLfL^   Az   ] 
L z-g Z-g (Z-g)^ J (17) 

where the Ax, etc, refer to the bias error in the X component.   The total wind 
error (o*    total) is defined as the square root of the sum of the noise error w 

variance plus the bias square error and is given by Equation 18 

w 
x total w 

2 + Aw 
2- l'i 

'*] (18) 
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The optimization problem for wind determination is to find that type emooehing 
and smoothing intervals for horizontal and vertical coordinates that minimize 
Equation 18.   As in the case of the density smoothing, the noise error will 
decrease as the smoothing interval increases and the bias error increases as the 
smoothing interval increases, so that a minimum does exist for Equation 18. 

3. 3 Minimization of Total Wind Error 

3. 3.1      Discussion of Variables in Noise Error Term 

The noise error variance (Equation 16) is a function of the vertical velocity 
and acceleration, the horizontal velocity and acceleration, and the errors in 
measuring the horizontal and vertical velocities and accelerations.   As shown 
previously (Figure 3), the noise error in a velocity or acceleration measurement 
is a function of the degree of smoothing, smoothing interval, time spacing between 
data points, and the error in the radr>r coordinates.   The types of smoothing 
considered were linear-linear, cubic-linear, cubic-cubic, quadratic and quartic 
(quadratic and quartic smoothing consists of fitting a second and fourth degree 
polynomial respectively to the position coordinates and evaluating the first and 
second derivatives of the fits as velocity and acceleration).   The noise error formulas 
for the various degrees of smoothing for velocity and acceleration are given in 
Figure 3.   For any actual sphere flight, and for any of the smoothing techniques 
considered for measuring velocity and acceleration, the noise error in winds 
(Equation 16) can be calculated by knowing the radar accuracy fsr , «r t<r )|time spacing 
between data points (l/Z second for the independence requirements), ana the 
velocity and acceleration experienced by the sphere (these can be taken merely as 
the smoothed velocity and acceleration measurements).   Therefore, by taking a 
particular ROBIN flight and knowing the radar accuracies, the noise error variance 
can be calculated for &ny length velocity and acceleration smoothing intervals, as 
well as for linear, cubic, quadratic, and quartic velocity and acceleration smoothing 
procedures. 

3. 3. 2      Discussion of Variables in Bias Error Term 

The bias error term has been given by Equation 17.    To evaluate this 
expression, equations must be derived for the bias error in the velocity and 
acceleration measurements (Ak, Sx, Az, Si).    The rest of the variables in Equation 
17 are immediately available from the smoothed velocity and acceleration values. 
The bias velocity and acceleration measurements can be written as a function of the 
degree,  interval. At. and the true position field of the sensor versus time.    If one 
assumes the true position field of the sensor to be a polynomial of degree 3, and 
assuming a linear polynomial smoothing to evaluate the derivative, then Ax defined 

♦A a of 10 to 15 meters in each component is a representative estimate of FPS-16 radar 
accuracy obtained over a period of years from numerous dual-tracked flights flown 
at various ranges. 
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** ^t      ' ^       oth d  ** 8iVCn ^ A3 (3N -7)/20 where A, is the coefficient 
of the tkird degree term.   (See Appendix C).   If cubic smoothiLg i» used, then 
there will be no bias error for position fields up tu and including f jurth degree 
polynomial«.   That is, X tmoothed   wil1 e,^1,Ä, * true (»••»»»ftg noiae free data). 
The bias error formulas for single and double fit smoothing are presented as 
Figure 14 and derived in Appendix C. To apply the bias error formulas one must 
be able to substantiate the degree position field and determine the value of A    , 
the cubic coefficient.   For quadratic and quartic smoothing, the coefficient 
A   must be determined.   The next section will show how the position field and A» 
can be estimated for linear-linear, cubic-linear, and cubic-cubic smoothing. 
A similar approach has been employed for single fit smoothing (quadratic and 
quartic). *■ 

3. 3. 3      Procedure for Evaluating er 
% total 

The total wind error (Equation 18) was evaluated for linear-linear, cubic- 
linear, and cubic-cubic smoothing with N (velocity smoothing interval) and M 
(acceleri&aon smoothing interval) varying over a wide range of values to determine 
the optimum combination of degrees smoothing and smoothing interval that 
minimizes Equation 18.    Linear-cubic smoothing was not considered for the 
following reason.   Assuming position   to be an kth degree polynomial, then velocity 
is an k-lst degree polynomial and acceleration k-Znd degree polynomial.   Since 
acceleration is of one degree less than velocity, one does not anticipate    that the 
degree smoothing on acceleration should exceed the degree smoothing on velocity, 
thus,   linear-cubic is not considered. 

This logic is not applicable for the case of smoothing for density. For that 
case, linear-cubic v/as considered because the problem there was to determine 
two degrees for double smoothing that would effectively cancel the bias error in 
density. 

Figure 15 shows the steps in logic used in evaluating the total error 
equation for winds.    The discussion will be restricted to the X coordinate only, 
However   the same procedure holds for the Y and Z coordinates.    Step 1 is to 
determine the radar noise or , and the time spacing (At) for independent data points. 
These two quantities will permit the evaluation of the noise error formulas for 
linear and cubic smoothing and for any N and M.    a   is most easily determined 
from dual tracked flights by calculating the standaro deviation of the differences 
in the X position values from the two tracks.    If, however,  the flight being 
analyzed is tracked by only one FPS-16 radar, then theoretical radar poeition 
errors of perhaps a tenth of a mil in azimuth and elevation angles and 4. 5 yards 
in slant range may be assumed, and these values can be converted to rectangular 
coordinate errors.  The remaining steps of Figure 15 basically exhibit the logic 
and procedures required to evaluate the bias error components,  Ax   Ax,for each 
type dovi.ble smoothing.   In order to evaluate the bias errors an assumption must 
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DOUBLE SMOOTHING 

Position assumption for N < N* data points 

X = A0 + Ajt ♦ At2 ♦ At3 

Velocity Bias 

Li«., «. Ak, = toULg&l 

Cubic fit Akj s 0 

Position assumption Quintic for M data points where 2M + N - 2 *N 

X = B0 + Bjt + B2t2 + B3t3+ B4t4 (velocity) 

Acceleration Bias 

Linear-linear fit Ax«! * &-- -»«i 11       33       11 

Cubic-linear fit Akjj = B-At,2 (3M2-7) 

20 

Cubic-cubic fit AS., s 0 
33 

SINGLE SMOOTHING 

Position assumption for N data points 

X = AA + A, + A.t2 + A,t3 + A^t4 

0        12 3 4 

Velocity Bias 

Quadratic fi. Ai, = A}AA3NZ.7) 
2 20 

Quartic fit Ax. a 0 
4 

Acceleration Bias 
2 

Quadratic fit Ax, = A^At2 ^3N  "13) 

2        4 7 

Quartic fit Ax. » 0 
4 

Figure 14: Bias Error Formulas for Polynomial Smoothing 
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be made concerning the path of the sphere.   Step two is to assume that the true 
position path of the sensor is a third degree polynomial.   Step three is to 
determine the maximum number of points (N) for which this assumption is valid. 
This number can be determined by comparing the theoretical or dual track 
noise error (<r ) to the standard deviation of the position data from the cubic fit 
over N data points.   If the cubic assumption is valid for N data points, then the 
noise error should approximate the standard deviation of the position points from 
the cubic fit.   N in turn is increased until the standard deviation of the position 
points from the cubic fit significantly exceeds <r .   The smallest value of N for which 
the cubic assumption is found valid over all segments of the flight is called N*. 
Step four is to choose some N less than or equal to N* for an initial velocity 
smoothing interval.   Step five is to fit a cubic polynomial to the N position data 
points.   The coefficients of the cubic fit should be given with respect to t = o 
as the midpoint of the smoothing interval in order to utilise the bias error 
formulas of Figure 19.   Thus, the velocity at the midpoint is the coefficient A. 
(step 6).   Since the cubic polynomial was fit to assumed cubic position points, no 
bias error will result in the computed velocity A .   The error in the cubic velocity 
due to radar noise (a     ) is calculated by the noise error formulas in Figure 3. 

The noise and bias errors are next calculated for linear velocity smoothing by 
steps 7 and 8.   Step 7: A linear polynomial is fitted to the cubic position data 
points.   In this case there is   both a noise and a bias error associated with the 
linear velocity.     Step 8: The noise error is computed from the linear noise 
error formula (Figure 3).   The bias error is estimated from the formula 

2        2 
Ax   = A   At   (3N  -7)/20     (Figure 14 ) where A   is the estimate of the true cubic 

coefficient of the position field determined by fitting a cubic polynomial to the 
assumed cubic position data which is contaminated by radar noise.    Due to the 
noise in the data, the A   used to calculate the bias error is not the true A 
of the position field.    Therefore there will be an error in the calculation oi the 
bias error.    However, the variance of the error will be less than the cubic noise 
error term (Comment Step 8),    Consequently,  even though the bias error calculated 
is only an estimate of the true bias error, bounds can be placed on the accuracy 
of the estimate.    Furthermore, when an actual flight is analyzed and a large number I 
of calculations of A   have been made the calculated values of A   will have as 
their mean the true A   so that the calculated bias error will be centered about \ 
the true bias error ana a judgement can be made concerning its magnitude. | 

i 
For the sake of acceleration error calculations, the position field is now i 

assumed to be of degree 5.   Step 10 is to determine the maximum number of points 
for which a fifth degree polynomial assumption holds.    Call this number N'.    N' 
is found by the same technique used to find N* (Refer to step 3).    M, the number 
of data points used to compute acceleration,  is now chosen so that 2M + N-2 is ' 
less than or equal to N' (Step 11).    The number 2M + N-2 is the number of position | 
points that influence an acceleration calculation when M points are used for «     \ 
acceleration calculations and N points for velocity.    Position assumed quintic I 

I 
I 
| > 
1 

I 
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over N' points imptie« velocity i« quartic over N' point«.    Fitting quartic 
velocity by a cubic polynomial will result in no bias error (the first derivative 
of a cubic polynomial fit coincides with the first derivative of a quartic poly- 
nomial fit when evaluated  at the  midpoint of the interval ).   Step 12:  A cubic 
polynomial is fitted to the velocity points obtained from the cubic fits of position. 
No bias error is present     in this cubic-cubic acceleration (B ) since the 
velocity points fitted were free of bias (Step 13).   The noise error for the cubic - 

I cubic acceleration is calculated from the noise error formulas.   Next, acceleration 
| bias using cubic-linear smoothing is determined.   Step 14:  A linear polynomial 
I is fitted to the cubic velocity points (i. e., velocities obtained by cubic fits to 

position).   The bias error for the cubic-linear acceleration is given by 

i B   At.   (3M -7)/20t where B   is the estimate of the true cubic coefficient obtained 
I by fitting a cubic polynomial to noisy quartic velocity points and At  is the time 

spacing between ^ö.'ocity points, (step 15). Analagous to the velocity case there 
will be an error in the calculation of the bias error, since the calculated B, is 

I only an estimate of the true cubic coefficient.   The bounds for the variance of 
the bias estimate can be shown to be less than ir^>     .   The noise error for cubic- 

| 33 
linear acceleration is calculated from Figure 3.   Step 16:  A linear polynomial 

I is fitted to the velocities obtained by the linear fits of position data.   The noise 
I error in this linear-linear acceleration is given by Figure 3.   The most easily 
■ accessible means of calculating the bias error for the linear-linear acceleration 

is to difference the cubic-cubic acceleration from the linear-linear acceleration 
I     * (step 17).   Since the cubic-cubic acceleration contains no bias, its difference 

from the linear-linear acceleration will estimate the bias.   The error variance 
bounds of the estimate of the bias can be shown to be less than tr?.    .    Having 

t X33 | calculated the noise and bias errors for linear-linear, cubic-cubic, and cubic- 
linear velocity and acceleration measurements,   a substitution for these values 
into Equation 18 yields the total wind error for each type double smoothing (step 18). 
A comparison between the three total wind errors for the three types of smoothing 
determines that type smoothing which produces the minimum total error for the 
particular N and M chosen.   By changing the values of N and M the procedure 

I can be repeated and further comparisons made.   The optimum double smoothing 
f technique is that combination of degree polynomials (cubic-cubic, cubic-linear, 

linear-linear) and smoothing intervals (N and M) that gives the minimum total 
wind error.    Plots of the total wind error for each type double smoothing, and 
for N-M values of 51-35,  53-11, and 31-11 are presented as Figures 16-18.    These 

; are merely thrae illustrations of some of the possible combinations.  Figures 19-20 
present the total wind error for quadratic and quartic single fit smoothing.    The 
total error plots for single fit smoothing are determined by a procedure similar 
to that discussed for double smoothing.    The noise and bias error formulas for 
single fit smoothing are also given in Figures 3 and 14.   After analyzing plots 
of the type« illustrated in Figures 16-20 for all feasible combinations of N and M, 
it was determined that the 51-35 cubic-cubic provides optimum wind reduction. 
With this type smoothing, the total wind error (which consists only of noise 
error) remains less than 2 m/sec to 85 km and 10 m/sec to nearly 100 km.  Even 
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Figure 16: Total Error in X Wind and Y Wind for 51-35 Smoothing of Viper Dart 13 
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Figure 17: Total Error in X Wind and Y Wind for 53-11 Smoothing of Viper Dart 13 
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Figure 18: Total Error in X Wind and Y Wind for 31-11 Smoothing of Viper Dart 13 
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Figure 19: ToUl Error in X Wind and Y Wind for 31 Point Smoothing of Viper Dart 13 
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Figure 20: Total Error ir» X Wind and Y Wind for 99 Point Smoothing of Viper Dart 13 
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with optimum smoothing, the amount of detail that can be observed at the very 
high altitudes is limited because of the large altitude layer used in the smoothing. 
The frequency response curves (Figure 21) indicate the detail that can be observed. 
Plotted in the figure is the ratio of the amplitude of a sinusoidal wind after passing 
through the smoothing filter to the true amplitude of the original wind.   Each curve 
gives the ratio versus wavelength at a specific altitude.   For example, at 80 km 
the amplitude of a 10 km wave in the wind profile would appear in the reduced data 
to have 1/4 its actual amplitude.   A 20 km wave would retain 65% of its amplitude 
in the reduced data.   As seen from the figure, at altitudes in excess of 70 kilo- 
meters, wavelengths less than 10 km are largely destroyed, so that only a mean 
wind profile can be ascertained.   Below 70 km, wavelengths of 5 km and less 
will appear in the reduced data. 

3.4 Summary of Wind Errors Using Optimum Smoothing 

The 51-35 cubic-cubic smoothing technique in X, Y, and Z was found to be the 
optimum for measuring wind between 70 and 100 km. Using this smoothing, winds 
can be measured to at least an accuracy of 2 m/sec to 85 km and 10 m/sec to 95 km. 
Above 70 km, however, fine details in the wind profile are lost so that only details 
with vertical structure in excess of 10 km are retained by the smoothing technique. 
Below 70 km, fine scale structure with vertical wavelengths of 2 to 5 km can 
be observed in the reduced data. 

Steady Stete Wind Error (M/See) 
Altitude (Km) 

100 95 90 85 80 75 1 1   70 65 1 60 1 55 1    S0 1   40 1   S0   1 
Noise error 
in wiod conß' 
ponent 13 6 4 1 1 I 1 1 >■■  t han 1 m /■ec 

I _ 

30lan 

40 km 

50km 

10 5 

Wavcleogth km 

Figure 21: Steady State Wind Error and Frequency 
Reeponee for 51-35 Cubic-Cubic Smoothing 
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3. 5 Wind Validity 

It is interesting to observe that a collapsed sphere cannot accurately 
measure density but can accurately determine wind.   The reason being the 
following:   The equation used to compute density is indirectly proportional to the 
drag coefficient.   When a sphere collapses its drag coefficient changes drastically. 
The drag coefficient tables available are for spheres only and, thus, cannot be 
used for density determination when a sphere loses its spherical shape.   On the 
other hand, the simplified equation (not containing buoyancy and coriolis terms) 
used to compute wind does not depend upon the drag coefficient of the sphere and 
hence, can be evaluated even when the sphere is in a collapsed condition.   A slight 
effect of sphere collapse on wind determination does occur, however, through 
the buoyancy term which requires a value for density.   The insignificance of the 
buoyancy force above 30 km discards this as a possible source of wind error. 
Thus, wind accuracy can be maintained for a sphere in collapsed as well as 
inflated condition. 

4. PRESSURE 

The equation used for Pressure Computation is 

Z. 
pi= pi i+ ri pgdz • (l9) 

Jzui 

In order to use Equation 19. an initial pressure (P ) is required.   This 
pressure is computed from the gas law 

P =T   P — o     o Ko Ma 

where T is an estimate of the initial temperature generally taken from the 1962 
Standard Atmosphere or a Supplemental Atmosphere, P is computed from the 
density equation (1) by using T  to evaluate the initial Mach and Reynolds numbers, 
R is the universal gas constant and M is the molecular weight of air.   The 
integration of £quationl9is accomplished by the formula: 

^ Log (P.) - Log (P-J 

J z^Pgdz = g Antilog ( ~2 ) (Z. - Z.^). 

4.1 Pressure Error Equation 

In order to simplify the derivation of the error equation for pressure, 
linear integration using the trapazoidal rule is assumed, i. e., 

z. (P. +P.  ,) M pgd2 = g   ^iiL^.z^ 
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P. - P -! * I" < "i +'•i-l'  Bi-Zi.l>. 

The error in P. in terms of density errors is 

^i = P'-' + ^..l +  *   "' + \ + '''-• * %., ' ^^i-l' " Pi-. - f "i^i-."2!^-.' 

or* by simplifying» 

i-1 

\--\*\l\^-\^^\*-\^\^-h.l ]• (20) 

Two sources of error are apparent in equation 20: a) the error in pressure 
due to the error in the initial computation of pressure (from the initial estimate of 
temperature) and b) the error in pressure due to the integration of density errors. 
Both noise and bias errors are present in density.   These errors will effect pressure 
differently. 

4.1.1     Pressure Errors Resulting from Error in Initial Pressure 

As seen from Equation 20, the error in pressure at any point (P.) of the 
flight due to the error in initial pressure is constant.    The percent error in pressure 
due to the initial pressure error decreases as the flight progresses since 

p. 

becomes very small after a few kilometers.    For a 10% error in the initial estimate 
of temperature and a 73 km sphere apogee.    Engler (Ref. 1) has shown that after 6 to 7 
km of flight the resulting error in pressure has diminished to less than 1%.    For a 
125 km apogee, theoretical trajectories have been computed using initial temperatures 
of T   =TM,0.), and T   =. 9T,,,,,,,, and T    =1. IT.,,-„at 100 km.    These results agree 
with Engler's and are presented in Table 8. 

»./j. 
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TABLES 

Percent Error in Prcemire 
Reanltint from a 10% Error in the Initial Tempentnre 

1 100 95 90 «5 
ALTITODE -KM 

80     75     70     65     60     55     SO     45     35     50 j 

>J4 1.4 6 .1 LESS  THAN 0. 1% 

4.1. 2       Pressure Errors Resulting from Noise Errors in Density 

Assuming the errors in each densit/ data point (e   ) are independent 
Pi 

with mean 0 and standard deviation sr      the pressure error variance at a point 
Pi 

P. is given as 

2 -_-   |      [«r2    (Z.-Z  )2   +    I   a2    (Z  J..-Zn  / + /   (Z   -Z     )2]. 
. 4      L  po 

v   i     o' n=i   Pn     n+l     n-l p.      x      i-l   J 
(21) 

Equation 21 has been evaluated for the expected noise error profile in 
density for the expanding 19-21 linear-cubic smoothing.   See Table 4 for pertinent 

values of p   (100).      The results are presented in terms of percent pressure error 
in Table 9. 

TABLE 9 

Percent Error in Pressure 
Resulting from Noise Error in Den8ity--125 Km Apogee 

ALTITUDE-KM 

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 

-Z- (loo 8 0 3  5 1   & 1.0 0.7 0 8 1   5 2 0 2.0 2.0 2.0 2.0 2 0 2.0 2.0 

0P l|-O00) 1.0 I  2 0 7 0.4 0.2 0 2 0 2 0 2 0.2 0.2 0.2 C.2 0 1 0. i 0.1 

4.1„ 3       Pressure Errors Resulting from Bit.3 Errors in Density 

Bias errors arise in density because of bias introduced by the smoothing 
function (and perhaps bias errors in drag coefficient).    For the expanding 19-21 
linear-cubic smoothing the bias is given for 125 km apogee in Figure 5,    Assum- 
ing this bias profile,  the resulting pressure error at any point P. can be evaluated 
as 
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where dp. is the signed (*) bias in density at the ith point.   The percent error 

1      ^i 
in pvessnr*    --—   resulting from the evaluation of S)uatioo 22 is presented in 

i . 
Table 10.  See Table 4 for pertinent values o£ ■=£> (100). 

TABLE 10 

Percent Error in Pressure 
Resulting from Biss Error in Oensity--125 Km Apogee 

1 l*0 «s »0 ss M 75 

urm 
70 

IDE~KM 

«5    |    60 55 SO 45 4« 35 30    1 

*5Lll0«j •to ♦ J.5 ♦4.0 •3 0 -1,5 -1.0 -1.0 0 0 0 0 0 0 0 0 

ÄS-OOOj] «1.0 ♦2.4 ♦Z.J »i 1 ♦l.S -0.2 •li 4 -0.2 -0.1 -0.1 0 6 0 0 0     | 

4.1.4       Constant Percent Bias in Density 

It is interesting to observe the effect that a constant percent bias in 

density has on pressure accuracy.    Assume 
APS 

= K  a constant. Then from 

Equation 19 

T R Ap Z T R 7 

-r^'o(^Mzl(^)--i-p0-*J>* 
= K(p + g f _1pdz) = KP. 

\   o       J Z        / i (23) 
thus 

AP 
i   =    < . 

P. 
i 

Hence a constant percent bias in density (or for that, matter in drag coefficient) 
produces the same percent bias in pressure. 

4. 2 Summary of Pressure Errors 

Pressure errors result from the error in the initial estimate of temper- 
ature,  past and present noise errors in density, and past and present bias errors 
in density.    Figure 22 shows the estimated magnitude of the resulting pressure 
errors for a 125 km apogee using the expanding 19-21 lin-cub smoothing on density. 
A 10% error in the initial estimate of temperature is shown to diminish to less 
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than a 1% error in pressure after 7 km of flight.   The pressore error from the 
noise in density is less than 2% above 90 km and less than 1% below 90 km.   The 
pressure bias introduced by the smoothing induced bias in density is 2-3% above 
82 km and decreases to less than 1% below 78 km.   A constant percent bias in 
density produces the same constant percent bias in pressure 

u 
o 
h 
U 
U 
♦* e 
m 
(i u. 
m 

0, 

Pressure Error Due to + 10% Error in Initial Tempsratare 

Bias Error Due to 19-2' Lin-Cub Smoothing 

I» Noise Error 

70 60 
Altitude   Km 

Figure 22:   Pressure Errors for Sphere with 125 Km Apogee 

5. TEMPERATURE 

Temperature is computed from the pressure and density using the 
gas law.    Temperature errors result from errors in density and pressure. In 
addition, above 90 km temperature errors may also result from a change in 
the molecular weight of air. 

5.1 Temperature Error Equation 

The temperature increment resulting from error increments in pressure 
and density is approximated by 

dT ST 
ap dP + il   dp 

a P 
(24) 

or 
dT 
T 

_dP 
P" P 
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The effect of density and pressure errors on temperature depends upon the type 
of errors in density and pressure.   Noise and bias errors occur in density.   The 
effect of each of these type errors on pressure accuracy has been described in 
section 4.   By combining each type density error with the resultant error it 
produces in pressure, and substituting into Equation 24, a temperature error profile 
is generated.   In addition to density errors that produce pressure errors, the 
error in the initial temperature also results in pressure and temperature errors. 

5. L1       Temperature Errors Resulting from Error in the Initial Preseure 

The error in the initial estimate of temperature produces a pressure error 
and also a density error since the Mach and Reynolds number- and thus C    depend 
on temperature.    The combined effect of this pressure and density error is given in 
Table il. 

TABLE 11 

Percent Error io Temperature 
Resulting if om a +10% Error in tne Initial Temperature 

ALTITUDE -KM 

1 100 95 90 85 <85                          1 

■£*• (100) 1   6.0 1.4 .6 . 1 Less than 3. 1% 

p   (loo) -4.0 -.8 -.3 -.1 Less than 0. 1% 

AT 
T (100) | 10.0 2.2 • 9 .2 Less than 0. 2%         j 

From Table 8 

From Table 2 

5.1. 2       Temperature Errors Resulting from Noise Ei   .AS, m iDensity 

Assuming the ith pressure and ith density errors to be independent, 
(which is not completely correct but they are essentially independent since the 
ith pressure error,  after a few data points, depends primarily on the previous 
density errors and only to a small degree on the ith density error),  the percent 
error variance in temperature is 

'P-2 

(^M-f) <^) ■ (25) 

The evaluation of Equation 25 using the noise error density profile for 
the 19-21 smoothing and the pressure error profile it produces is presented as 
Table 12 for a sphere apogee of 125 Km. 
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TABLE U 

Percfem Error in Tcmpcrator« 
Rcaultins (rom Noise Error» in Deacity *rt& Pre«curc--125 2bn Apog«e 

1100 «» W M M 7» 70 OS M M SO 4» 40 H M    1 

•'      1 
7-OOOJ 

t.o i.i I.S i.« 0.7 fct I.S 2.0 2.0 2,C .»• >.• 2.0 2.0 2.0   1 

i—(10«J 1.« 1.1 0.» •.4 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1 ».» 0.1 

•T        ! 1  •.! 1   ,-7 1.7 
i  ''' •■T 0.S ».s 2.0 2.0 : 2.0 2.0 2.0 2.0 2.0 2.0 

Froo» TabU » 

5.1. 3      Temperature Errors Resulting from Bias Errors in Density 

The bias errors in density introduced by the 19-21 smoothing and the 
resulting pressure errors are given in Table 10.   A substitution of these values 
into Equation 24 yields the resulting bias in temperature.    (See Table 13). 

TABLE 13 

Percent Error in Temperature 
Resulting from Bias Errors in Density and Preasure--125 Km Apogee 

ALTITUDE ~KI* 

{ too »5 90 *S •0 75 70 65 *J 55 so 45 40 35 30    { 

-*-(100^ ♦ 2.0 + 35 + 4.0 ♦ 30 -1. i .1.0 .1.0 0 0 0 0 0 0 0 0 

Ap (100) 
1» 

[♦2.0 ♦ *.4 ♦ 2.J + 3.1 + 1.5 .0.2 .0.4 .0.2 .0.1 .0.1 0 0 0 0 0 

^000) 40.0 -1.1 -1.7 + 0.1 3.0 + 0.« +0,6 -0.2 -0.1 -0.1 0 0 0 0 0 

} From T.W« »0 

5.1. 4       Constant Percent Bias in Density 

It was shown in section 4 that a constant percent bias in density yielded 
the same percent bias in pressure. Hence, from Equation 24 it follows directly 
that no temperature error is introduced by a constant percent error in density. 

5. 2 Summary of Temperature Errors 

Temperature errors pre the result of errors in density and pressure 
and, above 90 km, may also be the result of a change in the molecular weight 
of air.    Figure 23 shows the estimated temperature errors resulting from density 
and pressure errors for a sphere with apogee 125 km.   A 10% error in the initial 
estimate of temperature is shown to diminish to less than al% error in temperature 
after 10 km of flight.    The noise error in temperature resulting Irom the noise 
in density is a maximum of 3. 7% at 95 km (approximately 8 deg ), decreasing 
to less than 2% (approximately 4 deg ) by 90 km and remaining at 2% or lees 
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fox the remainder of the flight.   The temperature biao produced by the 19-21 
smoothing varieo between ± ?.% (approximately 4  deg ) from 100 to 75 km and is 
less than 1/2% (approximately 1 deg ) below 75 km.   A constant percent bxas in 
density produces no error in temperature. 
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Figure 23; Temperature Errors for aphcre with 125 Km apogee. 

DESCRIPTION OF HIGH ALTITUDE ROBIN PROGRAM 

This section summarizes the mechanics of the computer program, 
wirtten to implement the techniques derived in sections 2-5.  The program title 
is,   "May,  1970 AFCRL High Altitude ROBIN Program. "   A users manual (Ref. 12) 
which describes the program and describes how to interpret the  output data 
is available through the Vertical Sounding Techniques Branch (CRER) of the 
Air Force Cambridge Research Laboratories.    The basic flow of the program, 
order of computation,  iteration procedures,  etc. ,  are akin to those explained 
in Reference 1. 
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6.1 Editing 

Input to the ROBIN Program is time and X, Y, Z position coordinates 
which have been obtained by a transformation of the radar observed slant range, 
elevation angle and azimuth angle.   Prior to performing any computation on the 
position coordinates an editing procedure is inaugurated to remove any spurious 
data that may have resulted t'rom a radar malfunction.   The editing begins whin 
the ascent part of the rocket trajectory exceeds 150, 000 ft.   The procedure 
consists of comparing the first difference between consecutive position coordinates 
with a pre-established tolerance.   If the difference exceeds the tolerance, the 
second of the two points is considered bad.    The succeeding point (third point) 
is then differenced from the first point and compared to twice the tolerance. 
If the third point is accepted, a linear interpolation between the first and third 
points replace* ehe bad second point.   If the third point fails the tolerance, the 
procedure is repeated using the fourth, fifth, etc.   data point   until either 
another good point is found or 20 consecutive bad points (2 seconds of data) have 
been determined.    If 20 consecutive bad point» are found, or alternately, if 
2 seconds of missing data is found the program is restarted.    The tolerance 
used for the X and Y components is 150 ft.    This implies that the maximum 
allowable velocity obtained by finite difference between two consecutive 0.1 
second data points is 1500 ft/sec.   Since vertical velocities often exceed 2500 
ft/sec at high altitudes, two tolerances are used for testing the Z coordinate. 
The Z tolerance below 200, 0Ü0 ft is 200 ft, and above 200, 000 ft is 360 ft. 

The editing procedure, though not overly sophisticated, performs very 
capably with typical ROBIN flights.    Experience has shown that the radar track 
requires considerable editing on the upleg section of the rocket trajectory, and 
again at the very low altitudes, below 30 km, of the balloon trajectory.    The 
usable segment of data, between 30 km and 125 km, for computing meteorological 
parameters requires minimal, and sometimes no editing. 

6.2 Smoothing 

The program is designed to accept FPS-16 Radar Data at 0.1 second 
increments after it has been transformed to rectangular (X, Y, Z) coordinates. 
The program averages 5 of the 0.1 second data points to arrive at 1/2 second 
data points which are statistically independent.    These 1/2 second spaced 
rectangular position coordinates become the input data for the smoothing 
procedure. 

6.2.1        Density 

Above 60 km the vertical velocity and acceleration required for input 
to the density equation is computed by 19-21 linear cubic smoothing.    That is 
19 vertical position coordinates (1/2 second spaced) are fitted by a linear poly- 
nomial and the slope taken as the vertical velocity.    A slide of two data points 
after each fit results in a series of velocities spaced one second apart in time. 
21 of these velocities are fitted by a cubic polynomial and the derivative at the 
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midpoint of the internal taken as the acceleration.    A slide of one velocity point 
after «ach fit of velocity results in acceleration time spacing of one second. 
The horüsontal velocities and accelerations required for the density equation 
are computed by 51-35 cubic-cubic smoothing.    Below 60 km the velocity 
smoothing interval is expanded in such a way so as to maintain an approximate 
2* error in densiiv.    This is accomplished by expanding the smoothing interval 
by 4 points each 50 seconds.  That is,  at time 60 km + 50 seconds.  23-21 lin-cub 
smoothing is initiated ;   at time 60 km + 100 seconds,  27-21 smoothing,  etc. . 
until   51-21 smoothing is reached.    At this point (approximately 35 km) the 51-21 
linear-cubic smoothing is retained for the remainder of the flight. 

6.2.2 Winds 

All three rectangular coordinates,  vertical as well as horizontal,  used 
in the wind equation are computed by 51-35 cubic-cubic smoothing. 

6.3 Calculation of Meteorological Parameters 

The derivation of the equations used to calculate wind, density, temp- 
erature,and pressure using the passive sphere technique is well substantiated 
In Reference 1. All forces acting upon the sphere are included in the equation 
with the exception of the forces acting upon the apparent mass of the sphere. It 
can easily be shown that the apparent mass of the sphere can be neglected with- 
out affecting measurement accuracy. A flow diagram of the procedures used to 
calculate the meteorological parameters as excerpted from Reference I is given 
in Figure 24. 
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Piguro 24; Procedural Diagram for Calculation of Meteorological Parameter« 
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6.4 Determination of Density Validity 

The validity of density data is determined by two checks:   the time of 
fall check and the density gradient check {X check). 

ft. 4.1       Time of Fall Check 

The time of fail check is the primary test for sphere collapse.   It 
is used between 80 km and 30 km.    To use the time of fall test above 55 km 
sphere apogee must be first calculated.    Having determined the sphere apogee, 
the actual time of fall of the sphere between 80 and 70 km, between 70 and 60 
km,  60 and 55 km, etc. ,  is compared with that expected for a sphere falling 
from the determined apogee, through an atmosphere of 0.8 p,,,-„ and I. 2 p,.,..„• 

bZ be. 
If the actual time of fall is not within the range of that expected,  sphere collapse 
is indicated.    The printout reads "time of fall test between xx and xx km 
indicates sphere collapse. " 

6. 4. 2      Density Gradient Check (Xcheck) 

The density gradient check is used below 60 km and overlaps the time 
of fall test between 60 and 30 km.    It is the secondary sphere collapse check. 
The density gradient(-L _2iL) is estimated below 60 km by calculating \ as defined 
by Equation 8.    If X dotes not fall within the range of 

. 00014 -    /(. 00005)2 +( '0^84)       1 ^ <   • 00014 +ih' 00005)2+( 1^~) 

sphere collapse is Indicated and the printout reads "density gradient exceeds 
nominal value."   It is possible that a large vertical wind may at times, trip the 
X check.    Thus, the X check should be interpreted in conjunction with the time 

of fall test. 

6. 5 Measurement Accuracy 

Included in the calculation of each parameter (density,  wind,  tempera- 
ture,  and pressure) is a calculation of the estimated noise error in each parameter. 
The estimate is made using the formulas:   Density noise error terms of Equation 
6; Winds,  Equation I6j  Pressure,  Equation 2lT  Temperature,  Equation 25.    The 
position error is determined by assuming   r.m, s.  errors of 0.1 mil in azimuth 
and elevation and 4. 5 yards in slant range.    The other types error present 
(bias,  C     error,  etc. ) are not included in the computer printout.    For the 
magnitude of these errors "the reader" is referred to Figures 5, 16, and 23, 
and Table 1. 
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A frequency respcnse table for density and wind is printed for various escape 
altitudes at the end of the program (Figure 25y.   This serves as a means of 
determining the amount of detail observable in the wind and density output. 

6.6 Program Options and Output 

The program contains options for the type of output desired by the 
user.   Option 1: the program allows for the output to be piinted in either of 
two forms; a) data can be printed at constant time increments of one second, 
or b) the data can be printed to include constant altitude of 200 meters.    The 
constant altitude printout is determined by linear Interpolation of the constant 
time data.    Figures 26 and 27 show a sample of each type output.    Option 2: 
the program allows for a plot of the output data on a Cal-comp plotter.    The 
temperature, density ratio, pressure ratio, and wind components can be 
plotted as a function of altitude.    Figure 28 shows the output data that serves 
as the input to the plotting program.    Sample piots from the Cal-comp plotter 
can be observed in Figures 29,  30,  32,  33, 34,  35,  39, and 40. 

7 OPTIMUM WIND AND DENSITY REDUCTION OF THREE 
OPERATIONAL FLIGHTS 

A series of three Viper Dart flights were launched at Eglin Air Force 
Base on 18 February 1968 at 18:00,  19:00 and 20:00 zulu.    Each flight was 
tracked by two FPS-16 radars.    The flights are identified as Viper Dart 11,  12 
and 13 and the radars as radar 23 and radar 27.    The flights were reduced using 
the May 1970 High Altitude ROBIN Program. 

7.1 Density Accuracy 

Figures 29 and 30 show the density ratio ( —*■— ) for each track of 
p"62" 

each flight.    For each of the flights,  there is excellent agreement between radar 
23 and radar 27.    Figure 31 shows the percent noise error in density obtained 
from the printout of the computer program*.    If the la error estimate is valid, 
approximately 2/3 of the actual errors (density differences from two radar tracks 
should be   within the la estimate.    Figure 31 appears to substantiate this contention, 
especially below 95 km.    It is interesting,  however to observe the variation in 
density between flights one hour apart in time,  particularly in the 62-54 km 
region.    The cause of these differences is not known.    Possible causes are: 

a)     An actual fluctuation in density between the launch times of the 
flights. 

!S9?nt,-an M u6 err0r dUe t0 the initial 8ueSS of t^Perature are 
essentially the same m both radar tracks. As a result.differencing densities 
pressures, temperatures or winds does not determine the magnitude of these' 
errors. 
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■MIC er mutvcf Q' SNCCINEO LESISIIV i«y« tc «^uTict OF cmciMi 
Mfcv* *j A rt'XTrcx cr *tTiu3s »KC ^«VEI'^GTI-. 

t*iiiKOf u,z Miuw* rtasufS IK HICMTS«:.! 

«ITIUOf 

i too   i   «;   i   re   >   7C   >   (•   r   5C   >   40   >   so   » 

1 I C.31 « C.CI > C.Cl > C.C1 * C.C1 » C.22 > C.4i » €.75 X 
xixxxsxtx 

2 K 0.01 X C»8» > CCX X C.C4 > C.22  X 0.» X CSC X C.90 X 
XXXXXXXXX 

5 X 0.C1 « C.C2 I t.(i2 < l.«T X C.a*  x C.SO X ö.«e X C*49 X 
XXXXXXXXX 

10 I 3.47 X C.!t X 0«S« X C.72 X e.S7 t CM X CM X C.« X 
XXXXXXXXX 

29 X O.S* X C«9 « 0.9( X C.SJ X C« X CS9 X 8.«$ X CM X 

NOT REPRODUCIBLE 

MTIC tr  »»PLlTlDC OF  SfOClHEC SlhlSCICn WIKC TC «rKlflCE OF 
CftlCINM. HINC  »$ * FUSCTIOfc CF ALTITLCE ANC htVElEKCTh. 

lUTtTlCE  MC  HAtElc^CTH ftiSUXft  Ik «IICPETEKS.I 

XLIITICE 

X  ICO    X    «0    X     «0     X     fC    X     (0     X    9C    X    40     X    39 
XXXXXIIXXICXX«XXXXX»»XXSX«X>X»li»»»»M»>XXXI»XI»»XXXXXXX 
IXXXXXXX 

1 X 0.01 X C.CI X C.Cl   x C.Cl X C.OI  * C.C2 X 0.S7 X C.«6 
XXKXXXXX 

2 X CO!  X C.OI  X CCX  X C.ra  I C1C  a C4C X C.Tt X C.99 
IXXXXXXX 

S X C.S2 I CG? X CC«  X £.12 X C7C X O.sa X CM  X CM 
SXXXXXXX 

10 X O.r   X  C.I7 X C.24  x  C.(9  X  C.97  X CM X O.M  X CM 
X'. xxxxxx 
X C.>« X C.6} t Cfct  x C*£ X  C.9e X O.M X CM X CM 

10 

2-) 

Figure 25: Program Output - Frequency Response of Density and Winl 
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JWJL1« *f Wlljll J.JHJWW'ÜJIJI mi ■"—,^T- " «       •-! ,  II     ■ — 

• MS. FIT »i 
txcfa rif     ... >. 

is (Ali    n< 
3 • • 2«.2S 

._.» }„.      A .    .. 

-«.7I017> »STZtW.I        0. 0.1177   l.COCCO    0 

nnt 
mi 

_12.*«.20 li«l?lv  
12.44.21 li)««2 
I2.M.22 UiiH 
22.M.2) UiZl* 
12.M.24 Ut»U 

«IT    miM NHIKC srtce 
KcTEtS    r/$      M/S    KMIIS 

em 
DEC 

MFS$ »cMITT    2 VCl    I  tCC 
Ct.'HS H/S       C/SZ 
  Olt.l' -1.2« 

-I«.'-* -».?«' 
-3J*.72 *«.2« 

" -14J.«C -1.2» 
-}».2« •«.30 

l»»CH «cVM . CC  CIKS PHIS TEHT EH  n* 

.(fÄl!*k. lö*M_?_ IH. Wi- 

12.««.25 
12.4«.26 
12.4«.27 
12.4«.28 

..J2f««.?.« 
12.41.)0 
12.44.31 
12.4«.32 
12.4«.33 
12.4«.34 

_12.4«.3S 
12.44.36 

_J2.4«.37 
12.4«.38 
12.4«.3« 
12.49.40 

..12.4«.4l 
12.4«.42 

_ 12.49.43 
12.49.44 

„12.49.4S 
12.49.46 

.12.49.47 
12.4*1.48 

_.12.49.4« 
12.4«.SO 

. 12.4«.SI 
12.4«.S2 

..J2.49.53 
12.44.54 

_ 12.44.55 
12.49.S6 

. 12.44.57 
12.44.5« 

...12*44.54 
12.SO.-0 

. jr.so. 
12.SO. 

. 12.SO. 
12.SO. 

.12.50. 

12252C 
U2iS5 
i;i784 
I<14C4 
U1012.. 
1206^7 
U02CC 
Ii47e2 
1.43S4 
118417 
j;e«t7_ 
KBOU 
1S7$4S 
i:707» 
116541. 
116046 
115543 
115081 
114562 
114031 
1134« 
1*2444 
li234S. 
utais 
111244 
li06S4 
liOOtt 
104462 
icaasc 
108:24 
1U76C1 
106461 
1C63I3 
105654 
10444C 
104311 
103633 
10244C 
1C2244 
101532 
100*14 

v. 
^ 

/ 
^  

_12.50. 6 
12.SO.  7 

„12.50. 8 
12.SO. 4 

. 12.50.10 
12.50.11 

„12.50.12 
12.SO.13 

_.12.S0.14 
12..S0.15 
12.50.16 
12.50.17 

.12.50,18 
12.50.14 

. 12.50.20 
12.50.21 
12.50.22 
12.S9.23 

. i2.50.24 
12.50.25 
12.50.26 
12.50.27 
12.50.28 
12.50.29 

..12.$0.30 

100044 
4436C 
46621 
47677 
47124 
4636i 
45603 
44031 
44057 
43277 
4250» 
41726 
4040C 
40124 
84351 
63561 
ij777e 
o6«I 

.6621* 
65*45 
64641 
6342 
611** 
62472 

_ol7J2 

47.35 
53.ts 
>4.«3 
64.44 
70.4C- 
75.24- 
78.42- 
«0.47- 
80.4i 
77.C8 
72.C4 
65.34 
57.13 
*3.13 
32.57 
24.26 
20.53 
12.40 
s.c: 

-1.34 
-6.«2 

-;i.47 
-15.32 

13.51 
.-21.C4 

22.4C 
24.Ci 

'41.84 
•»3.41. 
74 .0». 
63.C« 
SO. 52 
37.45 
24.56 
11.32 
.1.25. 
12.23 
20.41 
27.04 
30.7! 
32.34 
32.33. 
30.20 
27.24 
23.*£ 
14.21 
14.73 
10.21 

3.64 
1.48 

-2.45 
-5.38 
-4.01 

•11.76 

2C0.71 
142.66 
114.33 
175.43 
1(8.66 
163.78 
HO.il 
159.81 
156.23 
151.61 
:*5.!C 
127.44 
126.Of 
112.7C 
47.36 
E1.6E 
66.26 
51.56 
36.57 
26.82 

.23.85 
24.56 
24.64 
36.26 
42.51 
47.bC 

. 52.01 

332 
327 
321. 
314 
305 
24* 
267 
277 
Zt". 
260 
253 
247 
241. 
236 
230. 
22* 
217 
207 
14* 
174 
146. 
116 
45 
«2 
74 
68 
63 

C.CC02 
C.CC03 
c.cce3. 
C.CC03 
C.OCM 
r.ncc4 
c.cces 
C.0C06 
.CJCCC6 
C.CCC7 
C.0CC8 
C.0C10 
C.0C11 
C.CC12 
t.0Cl4. 
C.nci6 
C.CCI8 
C.Ct2t 
C.CC24 
r.CC23 
C.rC33 
C.0C34 
c.r.C45 
C.CC53 
t.CCi2 
C.rC73 
f.ctt* 

?17 
202 
J41. 
184 
lec 
187 
186 
140 
145. 
142 
142 
143 
145 
147 
200. 
146 
144 
187 
177 
171 
164. 
161 
157 
155 
154 
155 
157 

C.CC04 
C.C004 
.C.COCS 
C.(0C6 
C.COOJ 
C.iOC4 
C.CCC4 
C.CCIC 
CCO12. 
c.cen 
cms 
C.(Q17 
C.(014 
C.CC22 

.C..tC25. 
C.C026 
C.C033 
C.C034 
C.(04l! 
C.C0S6 
C.CC64 
C.CC83 
C.C100 
C.(114 
C.(14C 
C.CU2 
C.C166 

-3*2.64 
-371.41 
-3*1.21 
-340.47 
-3««.<S 
-408.45 
-418.40 
-427.53 
-436.ES 
-«4S.S4 
^*5.?2 
-464.63 
-473.45 
~4B3.2i 
-442.33 
-SOI.«« 
-S10t«» 
-S20.24 
-52«.48 
-538.65 
-547.77 
-556.44 
-566.C7 
-575.18 
-SC4.21 
-$«S.I8 
-602.28 
-611.47 
-620.JI 
-624.(4 
-636.70 
-647.65 
-656.72 
-665.54 
-674.20 
-662.66 
-641.2« 
-64V.54 
-707.66 
-715.40 
-723.S2 
-.731.*6. 
-738,64 
-7*5.«3 
-752.40 
-754.C5 
-764.65 
-.J64..3T 
-774.*9 
-760.14 
-763.45 
-786.41 
-788.42 
-J40.C5 
-740.14 
-740.22 
-708.C2 
-763.ti 
-ita.zt 
-77*.«5 
-766.46 
-755.51 
-7*1, 
-723 
-703.44 
-660.(5 

-4.2« 
-4.28 "' 
-«.28 
-«.28 
-4.28  

■-'«■.2i 
•4.28 
-4.27 
-9.26 
-«.27~ 
-«.27 
-4.26 
-«.27 
"-V.i*- 

-«.26 
-«.26~ 
-«.25 
-«.23"" 
-«.20 
-«.1*   ' 
-«.16 
'-«.14 ~ 
--'..»?_ 
-4.11 
-9.11 
-«.10~ 
-«.10 
-«.IC'  ' 
-4.CB  
"-"«.CS 
-«.CO 
-8.45' 
-8.88 
-6.80 ' 
-8.7C  
-8.57 
-3.4* 
-8.31 
-8.15 
-7.42' 
-7.64 

2.SS 
2.66 

.-7.45_2J,Ui. 
-7.19    2.74 
-6.40 
-6.56 
-6.17 
-5.75 

2.82 
2.85 
2.87 
2.68 

.-.5.30„2.ee. 
-4.75 2.41 
-4.11 2.94 
-3.44 2.45 
-2.72 2.46 
-1.45 2.45 
r.l«.C4_ 2.5,4*. 
-0.11 2.46 

1.C4 3.0C 
2.46     3.05 

1« 2.2(6 
25 2.127 
 VLAMSPZ 

37 1.437 
43 1,974 
SO 1.824 

_ 56 1.8C0 
64   1.771 

 32.1..741 
83   1.700 

  46  1.653 
110 1.620 
134 1.542 
138 1.564 

._1.5.J_J,>U 
174 l.*»4 

.CO 

.35 

4.15 
6.04 
8.:8 

1C.T3 
13.24 
15.66 
16.33 
20.57 
22.47 

3.11 
3.16 

.3.. 18. 
3.14 
3.16 
3.14 
3.07 
2.47 
2.86 

.214 
262 
31. 

1.434 
1.376 
1.3C7 

411 1.251 
_5C3..1.203. 
617 1.1(2 
T42 1.127 
877 1.047 

1016 1.072 
1133 1.054 
1244 1.051 

* Expanding to 51 points 

Figure 26:   Program Output - One Second Data .'Option la 
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MOiiorw »int 
iv^vu.  «»-*cc    I-*«.. x-«tt   . 

■ MS. »If M »» i«*       n 
WMEC »It    .     .»      . .   » JL_      ..» _. 

ID UWI      M»          6S                     «C        HIU 
ttT««  I * J2.4«    -t.J«10*  4>70M>.«  UM.«   

•♦•»,r.$7 mnf turn «••• 
iini      ur    tutto mino sun  o»  MCSS    T  KMITV   I m   I tec   MCH wxm.    c«    K«  rus  TEW   EH    W 
itiLt    NEIIM   "/s    ws   «WM»   MS    m       K    e««»   ' n/s    H/SZ '      •••••rt*CEW*tM*   n/s  «/s 

_«, *.it   »*Hi-»>.j*-i».s«   u.m  M   e.AiiT its   o.cz>* -m.»o -I.M   I.II    Mt i.t«*    •••    o.«    •.»  o.«  •.« 
TMM-M.O-IV.Z«    It.lZ    M    O.OI«l Itl    O.CZM »ZTS.M -t.M' I.IZ-   Ml 1.1«!     '•'.*      ».*     •••    •.»~».«" 

.a. B.IZ   T«i4-M.u-zo.i«   M.ZI   »•   o.oui i«   «.qir.s .-ZT>.SI.-*.«L.I.IZ.   ue i.u*.   •••-_•••. .JhS. ••»._•••. 
         .   tttlWM »MCCt •    »SHI. 

M««e-«.»»-«.M »».»>  »» ».oi«» in ».ezis -rj».iT -O.M i.u ns LIT»    ».T    O.« 
•. S.U    T«»l-«.Ji-M.M »Z.»?    »Z a.OlSO IT* S.tMO -ZTS.t« -«.Z* l.U T6t l.l»}      C.T      *.f 

T«ZOe-Z«. 10-21.0* TZ.l*    SO C.OISZ 111 O.CM« -ZTS.J* -0,14 I.IS TO« I.ISO     O.T      0.1 
T*Oao-Z4.SI-Z*.ST TO.ZS    4* «.OISi 1*1 O.CIZO -ZT4.4* O.SZ t.l* MT 1.ISO      O.T   ' 

0. ».I*    TI«4I-Z*.4Z-Z*.M TO.IT    44 O.OISO 1*1 C.MZ« -ZT4.M O.M 1.16 STO 1.12«      0.T 
7MM-21.14-ZS.M «T.T1    «1 O.OItS i*) O.CISt -ZT*.ST O.CO LIT «SO LUX     O.T 

_»> J.I»     TiTZS-M.I«-Z*.Z« M.T«     46 C.0I*7  1*1 «..0*0 -ZT4.44 0.«0_1.I0 «T«  I.1W O.T 
Tt*eo->o.)»-z*.ts *».»>   M e.oiTi IM O.CITZ -2T4.TO LZO i.i« tozo i.e««   'O;T 

0.  ».1*    M4M-X0.44-ZT.4T M.Z*    31 Colt* IS« O.HOS -ZT*.«! LM L10 IMI  1.0«»      O.T 
m0O-.T.4i-»J.»4 «».«Z    »1 O.OIT« ISO O.CM» -ZT4.*T I.T* 1.1« 1MT l.OM      O.T 

0. S.IT    m04-l*.»J-Zi.«* «Z.«0    Z* CO»«* IS» O.CSl* -ZTS.tl Z.Z1 LI« UM l.OTt      0.* 
T0Z0O-14.4«-Z*.«« *2.M    2» O.Oi** ISS 0.C41T -2TS.TT Z.ZZ LI« UM I.OTT      0.« 

  _    »tOO-lLU-Z«.«J «Z.ZT    ZO 0.01«S IS» O.CMI -ZTZ.OI Z.M l.l« 1ZS0 l.OM      0.* 
• .S.U    TT«44-M.4«-»0.Z0 tZ.10    1« C.Ol«T »SZ O.C*»l -ZTI.i4 Z.JT LI«' IZTI LMf~'0.*' 
  _ TJMO -T.40~J0.I1 41.*T    IS 0.020S IM O.WfO ->**.*> S.M 1.1« IStZ LOS* 
0.1.1«    TTM* -S.IZ-SI.IS *1.SS      « CCZM 14« 0.t*iT -Z4T.T4' 1.1« 1.1« ' UT« LMT 

TT*M -S.eS-lLIS »l.M IZ1 0.0211 14« e.t4«T -2*4,58 1.2T 1.10 1*01 l.MZ 
0. l.ZO    TT42*    1,IS~11,1S 00,»2 1ST 0.0221  !*• O.CSl« •2M.22 1.4S LIT 14SZ  1.0)4' 
 moo    I.I1-)1,I0 M.S« ISi 0.0222:4« 0.(»2Z -ZM.IS l.*T LIT |4*l  1.0}2_ 

TT200    4.C0-M.»» *I,1S 14« 0.02SI  14T O.tSSO -2S«,41 l.M LtS 1SZT  l.OZZ 
0.  S.21    TTITI    *.»2->0.«2 *l.2J 14) 0.02)4  14T O.CSSS -2S«.T« l.*2 I,IS IS)* 1.020 

TTNO    »,i)-J0.74 *2.*1 142 0.0241 14T O.C»7* -2SS.«< l.M 1.14 1STS LOM 
0.  1.22    T*«l* 10.«-J0.70 *1.SI  140 0.0240 14? O.CStT -2S4.t2 l.M 1.11 15«) 1.001 

TMM  I2.T>-)0,S) »*.)•  »* 0.0255  14T O.CtOl   -252.75 ).*• 1.12 l*IS  0.««S" 
.0.   I.}).   TMM  |4,«4-10.14 •S.42 1)1 0.02*)   1*7 O.tilS -2S0.S« l.M, 1.11 1*40 0.«M 

T*MO  iS.4>-)a.2> M.1T 111 0,02*6  14« 0.e*2* -24«.*1 1,*T 1.10 1*S0 0.4fl'* 
..0,  1.2*    TMIS  10,72-2').«I M.S1  12T 0.0270 1*« CCM« -24*,17 1.*) 1.0« 167« 0.«*7 

TMM 1«.«7-2«,S2 M.*«  12* 0.0179  14« 0.C4S0 -2*4.70 1,*Z LOO t*T«  0.«*»" 
7*100  22.14-21.«1 70,78  121 C.0211   1S1 O.tMV  -2*4.ST l.M 1.0* 1*77   0.950 

0.   1,15     7*1*»  22,*4-2*,T* 71,10  121 0.0291   112 O.C470 »2*4,24 1,4* 1.0* 1677   0,9*1  ' 
 ... ..TMM 2S,»l-2t,0« Tl.«l  1(* «.0104  1S4 0.C4M -242.4« 1,12 l.M 16710.911  O.T 

0.   1.2*     7S921 20.14-27,7T TS.O»  115 0.0)09  US O.U«l  -241.*« 1,2» l.«) IMS  0.92*     ~0.T 
TMM 2«.15-26.SO 7*,10  112 0.0)17   1ST O.CTOS -Z40.54 1.1» 1.02 1*7»   0.912       O.T 

0.   S.IT     75*»0  10,41-2»,14 77.51   110 0.012»  1»« O.t»!5  -2»«,42 1,0» 1.01 16*1   0.901       O.T 
  T»*00'»1,24-2».2« T0.12 »Oi 0.0)11  151 0,CT2* -21S.*4 2.«« 1.00 169)0.391      O.T 

0,   1.2»    75*«1  22.(7-24.22 T9.ll  IM 0.0142  1»« 0.174* -2)7.12 2.1* 0.9« 171*  0.»71       O.T 
 T»4M 11.2*-2).«S T9.*T 10» 0.014» IS« O.C7»l -23*.»T_2.*S _0.«« ITUO.O*» O.T 
0.   1.2«     15204   1».12-22,»4 SI.I« 101 0.01*0  1»« e.C791   -214.M 2,14" 0.9t UO)   O.OSS      O.T' 

.   _      ...   75200  1S.1S-22,«1 »1,40 102 0.C36O  15* 0,t7«l   -211,94 2.7* 0.9» KM  0.«1»       O.T 
TSOM  M.4»-2t.*T »2.1»  IM 0.017»  15* O.C»14  -210.9* ).*4 0.«7 1990  0.IIS '    0,7 

0.   1.1»     T49T0  34.45-21.49 »2.»)  IM 0.0)1»   IM 0.CS41  -21C.S1 2.6J 0.97 IMI  0.010       0.7 

..0..3.JI 
7*»00  lT.)l-20,»»    «2.7» 29»    5.0)92  IS*    O.CMZ -221.97    2.»»    0.9*    19*0 0.792      O.T 
.741)«.»l.»»r20.2>_.02,»J,29«. J.019T l»*_.O..C»U_-.2Z7J.04..«.M_J^.«4_?.«M_«»ill__JU.t 

 ..WA6 V*iUE NOT CIVEI..   . $.•••._ 1»V_. 

.:_ 0«*S. «UUE HOT CI.VE« ••.«»_ !»«_ 
* Expanding to SI points 

Figure 27: Program Output - ConoUnt Altitude UfiterpoUtioa); Optioe lb 
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S AITITUOF 0FI»S   ■*' P«»CS  8*T -cMp MST  1IN0 NOATH WIKO 
«IS^O. 1.07*16 1.05121 200, -22.76 15,18 
••SAOfl. 1.02511 1.P401» 201, -10.6« 19,08 
«5*»«. l.OISS« 1,«4830 70?. -16.73 20.99 
«•i^O, l.«0'»86 1 .C48C«» 206. -9,58 22,13 
«»siy»'>. '».'»«?22 I.r48«l 206. -4.91 2).I9 
•4«-), 0,07607 1.04414 208. -9.25 26.15 
•«««0. 0.«S727 1.03SR5 211, 6.03 26.36 
•»««»0. 0.O?e6I l.O»68? 2n, 8,30 W.56 
«*^*»- ««•»240« 1.034r2 716. 12,26 26.75 
^C«'». 0.«I27) 1.03311 218. 16.53 26.98 
invif». o.»<»sos I .025«i5 210. 16,80 25.21 
•■*5'»0, «.«^1)6 1.02011 271, 10.03 25.36 
0^*01», C.07C89 1.01512 222, 20.08 26.90 
«■»wo. 0.46172 l.*1132 22), 22.93 26.46 
9-»e«o. O.P6-»2S 1.0C856 274, 24.84 23.86 
o?l«0. o.o?. to1» 0,0 09 86 225, 26.65 22.06 
«»?600, O.8206? 0.00761 227, 2).07 20.27 
«?«00. 0.^r71S 0.?«667 220. 29.68 18.46 
*»2200. 0.^0*06 0.oei72 228. 31.08 1.6. 26 
«»20"^. r.'«f0C4 0.07700 ?28. 37.69 16.01 
«IWO. 0.7O221 0.06(163 227. 33.84 11.82 
eiftnn. 0.7«>C31 0.06128 775, 36.65 9,92 
«>1*«0. 0.78«;6S 0.05525 223, 35.67 8.02 
«»IWO, 0.7OC1S 0.05044 221, 36.28 6.'. 2 
•1000. 0.70|P4 0.«>4747 21«, 36.69 4.96 
QOWO. O.-»880? 0.'»3001 ?18, 36.70 3.59 
«»0600. 0.78,:62 0.037C1 716. 36.92 2.33 
•moo. 0.7811? 0.«Zf76 215, 36.68 1.63 
90200. 0.^7750 0.O2276 215, 36.39 0.56 
OOOOO. 0.77409 O.OIO'B 214, 36.10 -0.31 
«■»BOO. 0.7ft?t4 O,«!!^ 214, 35.A6 -1.21 
«0600. 0.76S»8 O.O05f7 21). 35.16 -2.13 
«0400. 0.7«2a2 0.000^8 71). 34.67 -3,04 
MWO. 0.75c« 0,««0651 21). 34.18 -3.86 
840^0. 0.75«Jll O.?0377 212. 33.70 -4.66 
n«*»o. 0.75251 0.83671 212. 33.21 -5.61 
•tR600. 0.f5205 0.83031 211. 32.62 -5.99 
«9*00. O.T«;72S 0.87596 7 CO. 31.00 -6.33 
•<>7no. 0.7f,348 0.8777« 206. 31.19 -6.68 
«iOOOO. 0.»7146 0.87103 2C4. 30.48 -6.98 
f)7800. 0.-»'7ft8<» 0.fl6533 201. 29.81 -7.20 
57600. 0.78^92 0.06007 198. 20.1) -7.41 
im^o. O.TOl^^ 0.<»5801 105. 28.46 -7.62 
»T2ft0. 0.^0093 0.'!5720 10), 27.84 -7.82 
»7000. 0.M15'* 0.95743 100. 27.23 -8.01 
86S09. 0.01797 0.«5305 184. 26.60 -8.20 
JJ66ftO. Ö.'n?07 0.»!«146 104. 25.51 -7.08 
•6400. C.84760 O.'SIOS 141. 24.43 -7.76 
«6200. 0.«»<-465 0.»Sl7f 178. 2). 35 -7.54 
86000. 0.47?8' 0.45455 175. 71.06 -7.15 
»S^o. O.n^f.oi 0.P5287 175. 20.52 -5.72 
«S6rt0. 0.-*fll3> •).»,5?4c> 174. 19.00 -6.20 
«s«»o. O.^PTO? 0.35^70 17). 17.70 -5.83 
ni?!?». O.0q'9? 0.«!5617 17). 16.55 -5.48 
85000. 0.OC101 0.?5060 172. 15.31 -5.0° 
84 «100. O.OfSlS 0.<}587': 171. 16.15 -4.65 
8'» 600. 0. n«;*«» 0.05010 170. 13.00 -4.23 
**600. o.oie.si 0.86175 169. 12^02 -T.70 
•««7^0. O.'»?2?0 0."6433 160. 11.02 -3.34 
84000. 0.O2S41 0.36874 164. 10.16 -2.36 
8)800. 0.'>?14T 0.86844 168. 9.?9 -2.37 

Figure 28: Computer Output of Data for Plotting 
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Figure 29: Density Ratio from Viper Darts 11, 12, and 13; Radar 27 

b) Spacial variations in density between the paths of three 
spheres. 

c) Inaccuracies of the drag coefficients being experienced at 
different altitudes for the three spheres. 

d) A change in the vertical motions of the atmosphere. 
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These discrepancies in density, one hour apart in time, are not due 
to the inability of the radar to accurately track the spheres.   Comparison of 
densities from the two tracks of the same sphere clearly rule out this cause. 
Nor are the density discrepancies thought to be a result of a sphere collapse 
or elongation.   Both sphere collapse checks indicate the spheres were still 
inflated to at least 40 km. 

VIPER DART II RADAR 23 

Figure 30: Density Ratio from Viper Darts 11,  12, and 13: Radar 23 
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Figure 31:  Comparison of Estimated to Actual Density Errors: 
Viper Darts 11, 12, and 13 

7.2 Wind Accuracy- 

Figures 32-35 are plots of the W    (East Wind) and W    (North Wind)wind 
components for each of the three flights.   Above 85 km Viper Darts 12 and 13 show 
large differences between winds from radar 23 and radar 27.    To determine if 
the differences were within the bounds of that estimate, plots were made compar- 
ing the actual noise errors to the estimated lo- errors.     Figures 36 and 37 show 
the noise error in winds obtained by differencing the winds from the two tracks 
compared to that estimated by the computer program output.    Both the W   and W 
component errors from Viper Dart 11 show the expected agreement.    Viper Darts 
12 and 13 show good agreement in general only below 85 km.   The cause of this 
decrease in agreement, which is beyond what is predicted from the total error 
plots for 51-35 cubic-cubic smoothing (Figure 16) has been investigated.    The 
following results have been obtained. 
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1% 
The tracks of radar 23 from both Viper Dart 12 and Viper Dart 13 flights 

showed large oscillation in horizontal position which did not appear in the tracks 
of radar 27 from the same flights (see Figure 38).    Previous experience with 
FPS-16 tracking data, indicates the cause of the oscillation in the track from radar 
23 is probably a low servo band width setting.    The fact that radar 27 produces 
a smooth non-oscillating track indicates the oscillations as seen in the track of 
radar 23 are not real.    Further investigation of the effect of the servo on tracking 
of passive spheres is in order.   In comparing the wind profile from the flights 
one hour apart, changes in the wind field are seen. These changes,  especially 
below 80 km appear to be real variations in the wind field, since they are observed 
by both radars. 

VIPER DART l» RADAR 27 

«0 M 70 

«urruM-ni 

Figure 32: East Wind from Viper Darts 11,  12, and 13: 3ad»r 27 
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Figure 33: East Wind from Viper Dart, 11, 12. and 13: Radar 23 
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VIPKR DART 11 RADAR 27 

Figure 34: North Wind from Viper Dart« 11. 12, and 13; 
Radar 27 
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Figure 35: North Wind from Viper Darts 11, 12 and 13: Radar 23 
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Fifar* '-6: Comparison of Eatimsted to Actual East Wind Errors: 
Viper Darts U, 12, and 13 
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Figur« 37i Comparison ol Estimated to Actual North Wind Errors: 
Viper Darts II, 12, and 13. 
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Figur« 38: Comparlaon of Y positions from Rad« 27 and Radar 23; Vip*r Dart 12 

7.3 Pressure Accuracy 

Figures 39 and 40 show tb"; pressures obtained by each radar for the 
three flights.    The actual noise error in pressure (by differencing the pressure 
from the two tracks of the same flight) is compared to the estimated lir noise 
error in pressure obtained from the High Altitude ROBIN Program output in 

Figure 41.    The agreement between the actual and the estimated errors is 
good below 90 km.   Above 90 km pressure errors are larger than that 
estimated.    This is apparently the result of the low servo band width setting 
of radar Z3. 
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Figure 39: Pressure Ratio from Viper Darts U. 12 and 13; Radar 27 
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Figure 40: Pre.oure Ratio from Viper Dart. 11. 12. and 13: Radar 23 
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Figure 41: Comparison of Estimated to Actual Pressure Errors: Viper 
Viper Darts U, I2,and 13. 

7.4 Temperature Accuracy 

The temperature profiles for flights Viper Dart 11 -13 are presented 
in Figures 42 and 43.    By differencing the temperatures from two tracks of 
the same flight the noise error in temperature is computed.    Figure 44 shows 
the actual noise error in temperature for each flight and the estimated l<r noise 
error.  For each of the three flights, the agreement is very good except above 
90 km.    The disagreement above 9° km results from the somewhat larger than 
anticipated density and temperature errors above 90km. 
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Figure 42: Temperature from Viper Darts 11, 12, and 13; Radar 27 
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Figure 43: Temperature from Viper Darts 11, 12, and 13; Radar 23 
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Figure 44: Comparison of Estimated to Actual Tempe rature Errors 
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7.5 Conclusions 

A series of three Viper Dart flights launched on« hour apart has 
been reduced, using the May 1970 AFCR.L ROBIN Program.   The density 
noise error for these flights was consistent with that predicted for the 
expanding 19 «21 linear-cubic smoothing over the entire altitude span( 30-100 km). 
Observed differences in density between the flights oae hour apart cannot be 
attributed to smoothing error, since the two tracks of each sphere show 
remarkable consistency.   Wind accuracy for the three flights wap commensurate 
with that predicted for the 51-35 cubic-cubic in general only below 85 km. Viper 
Dart 11, however,  showed good agreement over the entire range from 30 to 100 
km.    The decrease in accuracy above 85 km for Viper Dart 12 and 13 is believed 
to be caused by a low servo band width setting en radar 23.    Horizontal position 
plots from radar 23 show oscillations not found in the track of radar 27.   These 
oscillations are often observed in sphere tracking at a low servo band width. 
They do not appear predominate in vertical position plots (Z,t)indicating 
perhaps a low servo band in azimuth for radar 23.    Further investigation of 
this problem is necessary.   As in the case of density, the one hour apart 
flights often show large changes in the structure of the wind field below 80 km, 
sometimes as large as 15 m/sec.   Since both radar tracks (for each sphere) 
observe the same wind detail (below 80 km)   this variation in wind structure is 
believed to be real.   Temperature and pressure accuracy was in good agree- 
ment with that estimated to altitudes of 90 km.   Above 90 km the low servo band 
width setting of radar 23 is believed to increase the errors in excess of that 
estimated. 
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8. SUMMARY OF DENSITY. WINDS, PRESSURE AND 
TEMPERATURE ERRORS 

For the convenience of the reader this section summarises the expected 
errors in wind and thermodynamic computations from the ROBIN System using 
the May 1970 AFCRL ROBIN Program.   Table 14 shows the error estimates for 
each of the meteorological parameters and the source of these errors.   All errors 
listed In Table 14 are point errors in the sense that they are the estimated errors 
in a data point at the specified altitude.   In the case of pressure and temperature, 
which are computed from an integration of density, the point errors reflect the 
effect of the errors in previous data points.    For each of the meteorological 
parameters the noise error is the error in that parameter which results from 
the noise in the radar coordinates.   The bias error is that error resulting 
from any bias introduced by the smoothing process. The error in density 
resulting from errors in the Drag Coefficient are difficult to assess due to the 
inconsistent results obtained by different experimenters.   Those Cp errors 
quoted in Table 14 are the UDRI's best estimate, with the information available, 
and is subject to revision if warrented upon the completion of work in progress 
at AEDC.    The error in density from a X m/sec vertical wind is obtained by 
multiplying the error from a 1 m/sec vertical wind (given in Table 14) by X. 
To compute the effect of Cjy     errors on pressure and temperature the direction 
( -I- or -) of the CTJ error as well as its magnitude must be known.   Since this is 
not known the effect of the Cp errors on these parameters cannot be determined. 
To compute the effect of vertical winds on pressure and temperature a vertical 
wind profile vs altitude must be assumed.   Since little is known of the structure 
of vertical winds in the atmosphere a representative profile is not available. 
The noise error in winds can be thought of as the error in the mean wind profile. 
An estimate of the bias error in wind is not given   because it depends upon the 
wind field itself.    For a given wave structure of the wind field the distortion of 
any frequency resulting from the smoothing process is given by the frequency 
response.    Table 15 shov/s the frequency response for both wind and density data. 
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TABLE 14 

SUMMARY OF OENSITT. PftESSURE. TEMPERATURE, AND WIND ERROKS 

Alttlsda (Kn) too 9J 90        8S 7S 70 65 M ss so 40 30 

ft 
o 
*-, 
Kg 
H • 

Kois* Error 

BJac Error 

Error dna lo 
10% arror ia 

♦2 

J.S 

♦S.S 

0.8 

LS        1 

♦4        *3 

0.7 

•LS 

0.0 

4 

LS 

-1 

!•(• thu 1/2« 

2 2 2 

tea* thas 1/2% 

Is 
H 
O 

4] 

o « 
U S 
W 8 
« S 
s^ 
u 
cu 

ui 

o 
Hi 

Id 
M~ 
K e 
Ü • 

o< 
s u 

Error fromC 

Error tn 
Im/aae 
vertical 
wind 

O 

•"IT 

Sie 

19 

.01 

.01 

.2 

.01 

.01 

.2 

.01 

.01 

.2 

.01 

.01 

.2 

.01 

.01 

.2 

.02 

.2 

.4 

.0) 

.4 

.6 

NoU« Error 

Bias Error 

Error daa to 
10% error in 
T 

1 

+2 

L2 0.7 le» than 1/2% 

+2.4       +2.3     43.1       +1.5     leaf than 1/2% 

1.4 0.6 lest than 1/2% 

Error due to 
C_ error and 
vertical winds 
C_ error and      Cannot be determined 

.1»        .3 .7 

.7        L6 LS 

.•       L0 LS 

Noise Error 

Bias Error 

Error due to 
10% error in 
T 

8.1 

0 

10 

3.7 

-1-1 

2.2 

1.7 1.1 

-1.7    +0. 1 

0.7 

+3 

0.8 

40.8 

I. 5 

40.6 

2 2 2 

less than 1/2% 

0.9 less than 1/2% 

Error due to 
Cne ror and 
vertisat winds 
Cne rorand      Cannot be determined 

a» — 

sow 
Ö « W    Noise Error 13 less than 1 m/sec 
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TabU 15 

FreqoMcy SMpons« of Wind und DMSttf 

125 Km Apof •• 

«ATIC Cf «rPLIlUCE Cf SHQOTMEO CfüSllf UVS IC ifHIUCI OF CI1CIKH 
M«v;  *$ A FV'XIlCMCf  HlUblX  <K0 W»V£l£HCTN* 

ItUlUOE  «NO MVEUNftll- riHUiSZ  IK XIICCETEMS.I  • 

UlinOE 

i IAO x «; x tc » 7c » e« > je » 40 » so « 
lxsi»ii>i)rii»yiixyi»>*SM>iit»ti>»>>»>iiti»i»i«»i)!»xxix 
XXXII X XXX 

i > e.oi i c.ej x c.ci x c.ci i c»ci x c.« x c*42 x c.-rs I 
KXXXIIIIX 

2 X 0.31 X C.31 X C.CI I t.C4 I C.22 I 0.» X C.8C X C.«0 X 
IXXXIIIII 

i * 0.C1 < C.C2 X COS I 1.47 X C.a* * C.<0 I 0.«6 I C.99 X 
X     X      X      X     X      X-.X     X     X 

10 X 9.4T X C.Sl X O.SS X C.72 l C.97 I C.tt l C.S") X CM I 
XXXIIIIIX 

20 X 0.S4 X C.95 X 0.«t X t.SS 1 Cf« X Cf« X 0.«« I CM S 

MT1C CF IflPLtUOE OF  SNUCTHEC SIKUSQICIl WIKQ TO »fFLITUCE OF 
OftICINM. HINC  *$ A tlMCTIOM QF  ALTITUOE  «SC MVEICNCTH. 

lAlTITUCE  ANC  HAViLCNGTH ftAJUREO  IK KUCETERJ.) 

«L1IUDE 

X ICO    X    ^0    X    CO    %    7?    I    CO    I    SC    I    40    I    30    X 
XlkXXXXXXIXXXXXXXXX>>>l>»IXXX>>)l>>*>>l»XXkXX«»»>l)IX*XXXXX 
xxxxxxxxx 

1 X 0.01 X C.CI X COl   X C.CI  X C.01  X C.C2 X C.S7 X C.W X 
XXXXXXXXX 

2 X C.01  X C.01   X C.CI  X  C.r3  X  C.IC  X C.AC  X C76  X C.49 X 
xxxxxxxxx 

S X C.S2 x CGI  ( CCt  X C.13 X C.7C X 0.« X C.S« X C49 X 
XXJSXXIIXI 

10 X  0.14  X  C.17  X C24  X  C.eS  X  C.97  X  Ct9 X 0.99  X C.99 X 
XXXXXXXXI 

20 X  C.S6  X  C.63  X  C.tl   X  C.SC  X  C.9S  X  0.?9  X  Cf«  X C.99 I 
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APPENDIX A 

DERIVATION OF THE DENSITY ERROR EOJATION 

Consider density as given by the equation: 

P   = 

u z 

Assuming errors in density as a function of ei-rors in C   , W.,  Z,  Z, V 

the error increment in density is approximated by: 

Ap   = -^ß- AC.   + -^-AV   + -^-A£   +   -^r AS   +  -^-Aw  . 
ac„     a     av öz az aw      z 

D z 

Density Error due to Drag Coefficient 

Assuming that drag coefficient errors are independent of the other errors, 

the percent change in density resulting from a C    error of e_    is given by 
D CD 

_£_   _    .    2. 
CD 

If each error in C    is independent, and with normal distribution and zero 

mean, the percent error variance in density resulting from the C    error 

distribution is given by 

D 

A-I 



Penalty Error Due to Errors in V. 

The increment of error in density for horizontal velocity errors of e« 

and e. and horizontal wind errors of e      and e      is given by 
y w w        8 ' 

x y 

e    =   J»iL.e    = ^£_e     + -a£Le.   + .&_,       + ^£_e     . 
P <>V      V bk     * SY      y        öW      Wx        3W      Wy 

x y 

the percent error increment is: 

Y-W Y-W X-W Y-W 

-ß-   = HSc  "   2      %  T    2        eW     + v2       ew llA) 
yz x V y V x V y 

Since the errors inX and Y are much smaller than the errors in W   and W , x y 

the primary contribution to Eq. 1A comes from the last two terms.   Hence, 

Eq. 1A can be approxima.   * uy 

X-W Y-W 
x .     y 
— e       +    ^        e 

V x V y 

Assuming normally distributed and independent errors in W   and W   the 

percent error variance in density becomes 

,0-2 ^    X - W 2 Y-W 2 
2 

W 
X 

+ 
L v2 

(T 
W 

2 
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r I-^^=^.-»l*'■~5~v•-,■ - —■  " ;VOfV"*V-*1 -■?---:V^W?rH'b^*P>"- 

The assumptions e. << e      and e. << e      are not critical in the derivation F x w y w 
x ' y 

of an error equation.    Even if the assumptions introduced a 10% error in the 

error equation, the results woiid be satisfactory for our purpose.    The impor- 

tant criterion is to measure the meteorological parameters as accurately as 

possible and to have an estimate of their errors. If the estimate is off by 10%, it 

is of little consequence. 

Density Error Due to Vertical Velocity and Acceleration Errors 

The error increment in density resulting from vertical velocity and 

acceleration errors of e. and e. As given by 
z z 

en   =   -^-e.   *   -^e.. (2A) 
p        az   z       hZ    z 

Velocity and acceleration are computed by smoothing vertical position coordinates. 

The smoothed velocity and acceleration contain noise error due to radar noise 

and bais error introduced by the smoothing process.   Interpreting Eq.  2A in 

terms of noise error in velocity(e.) and accelerationle..^the percent noise 
z z 

error variation in density is given by 
7 

€p v2 + (z-wz)2 1 
e.     +    -7-  e« (3A) 

v (z - wz)       z Z - g      z 

By assuming independent and normally distributed errors in velocity and 

acceleration and observing that W   <<Z and V^Z Equation 3A simplifies to 

.   O       ,2 2 a.      2 ,     C"      v2 

P z Z - g 
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The squared bias error in density introduced by bias velocity and acceleration 

errors is given by 

where Ap represent the bias error in the parameter p, and As and Lz  the bias 

• • • 
in Z and Z.   The total percent error in density is defined as 

2 2 2 
<r <r Ao 

{-*■)     -   i-^)      +   (—) 
p     total p       noise p       bias 

or 

,<r.2 ,2<r..2 .o-«       .2        _2Az ...       „2 

(-JL)   ' (-f") ^"T-) +[-T-+-f- • p Z Z-g Z Z-g 

Density Error Due to Vertical Winds 

The percent variation in density resulting from a vertical wind error of 

Aw    is, to a first order approximation 

2 2 

AD V    + (Z - W ) z 

p V (Z - w ) Z.'.      ...      Awz* (4A) 

Since W   < < Z and Ysf Z, the squared percent error in density for a vertical 

wind error of A w   is _ _ 
z ,2,2 

(-)  = (-^) ■ 
P Z 
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APPENDIX B 

DERIVATION OF THE NOISE ERROR FORMULAS 

a)   Velocity 

Let X(l) be the radar-ob served data point at time t = i, X(i)  the true value 

of the data point at t = i and c (i) the error in the observed data point; thus 

X(i)   = X(i) +e(i). 

If N equally time spaced data points are fitted by least squares to a 

polynomial, of degree k,  then the smoothed velocity at the midpoint of the inter- 

N + l val  ( th point) is given in terms of Legendre Polynomials as 

i(^i )   =  *! P,    ( 
N + l + A, 

N + l N + l. 
2   '■"2P2(-T->+-AkPk<-2^ 

where 

\ - 

N 
V 
L    P.   (i) X(i) 

i=l     K 

At pk
2(i) 

i=l 

P   (i)   =   1, o 

r-,     /•% N + 1 P1 (!)   =   i - -y- , 

1* (N2 - k2) 
P       (i)   =   P P    -  Li:! L 

4(4 k    - 1) k - 1 ' 

At =   time spacing between data points, 

N    -   Number of data points used in smoothing, 
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k    =   Degree of smoothing Polynomial 

P (i)   =   First derivative with respect to i of Pk(i)' 

Substitution of X (i) + e (i)   for X(i) in each A    gives 
k 

K                                                                               N 

£   P^D^i) + e(i)]                                    ^ Pk(i) [x(i) + e(i)] 
xtü^,  =ifl p;(JL+L) + ...+ifi p^N+L,. 

2 N 2 N 2 

i=l i=l 

Rearranging in term? of e (i) yields 

N '   N+l '   N+l 
P (i) P (-^r^) P (i) P  I ) 

x (-—) = 2. i     N ■— + • • •+ p"TJ L
X(I)

  
e(1)J* 

IP1W At Ipk<« 
2 i=l At 

i=l i=l 

Assuming that the distribution of each e (i) is normal with mean C and variance 

2 
o-     and that cov (e (i),  e (j))   =0 for i ^ j the error variance of the smoothed 

x 

velocity is 

N „ ... „' .N+l v „  ,„     '     N+l        2 

V    i   PI(i)Pl(~)     , .   Pk(i) P
k jjllj   1 2 

i=l At    ^  P^i) At    ^P^(i) 

1=1 i=l 

B-2 



N 

Since ')    P. (i) P. (i) = 0 for j ^ k   the above equation simplifies to 

i=l 

«r. ,N+l, 

[p[^] [K{J^] 

^ *    2 

1=1 

pk
2(i) 

i=l 

At* 
(IB) 

It can easily be shown that for even k 

P.'.       A^)-0. k(cven)     2 

Hence equation (IB) simplifies to 

x(—5-) I     N 
I^> 
i=l i=l 

I 
i=l 

+ . 

P5
2(i) 

.(2B) 
Ät 

The terms in parenthesis on the right side of the above equation can be written 

as a function of N.    (See reference 10).    The expressions for the first two terms 

arc 

[P;,^,]' 
N 

I 
1=1 

P* (i) 

12 

N(N2-1) 
(3B) 
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and 
2 

7(3N   -7)   (N-4)J 

P32(i) ' (N + 3>! 

(4B) 

i=l 

By substitution of 3B and 4B into 2B, the noise error in velocity is determined 

for polynomial smoothing of degrees 1 through 4.   Note that since 

•     N + l '    N + l 
P. (—r—)   =  P. (—z—)   =  0 both the velocity obtained from a second or 2       2 4      2 

forth degree polynomial, and the noise error in this velocity are identical to 

that obtained from a first or third degree polynomical respectively. 

Acceleration 

The noise error in acceleration for double polynomial smoothing is 

obtained by two applications of the appropriate velocity noise error formulas. 

For accelerations that are obtained as the second derivative of the least 

squares f?t of a polynomial of degree k over N data points, the noise error 

formulas are derived as follows:   The smoothed acceleration at the midpoint 

of the interval is given by: 

• •   N+l N+l N+l N+l 
X (-^jL)    =   A2P2" (-^i-)   +   A3P3" (-—M + . . .  + AkPk" (-—-) (5B) 

where P"  is the second derivative of P .    By writing X (i)   =  X(i) + e(i) and 

rearranging,  Equation 5B becomes 

B-4 



N    p ,» p "Ji+L p (i) p:= (üiL) 

isl       At2IP22(l) At     IPk{i) 

1=1 i=l 

The error variance of the smoothed acceleration is 

K'^]2 ,    ,\nftix '**     (6B, -    1—N      ■ +  ■ • • + JJ—"    j   —^— . (6B) 

i=l i=l 

It can be shown that for odd k 

" N+l 
k(odd)1   2 

This Equation (6B) simplifies to 

FTT" / N+M2 ^''N+l.-l2 2 

%• (-^ = i—ri—+   N 2    
+-• •) —^    (7B) 

i=i i=i 

The first two terms in parenthesis when written in terms of N are 

2 
" 'N+1 . 

720 
r  "   N+i   i 
[p2 <■¥") ] 

)    P7 W 
^   2 

i=l 

^ 5 3 2,., N   -5N   +4N 
(8B) 
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and 

2 
t"    N+l    i 2        2 

P4 (-r") J 44100 (3N   -13)  

f P 2(i) 49N (N2 - 1)(N6 - 29N4 + 244N2 - 576) 

i=l 

(9B) 

A substitution of Equation»{8B) and (9B) into (7B) will yield the noise error 

formulas for acceleration obtained as the second derivative of a Quadratic 

and Qiartic Polynomial fit. 
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APPENDIX C 

BIAS ERROR FORMULAS 

Velocity 

that is 

Assume true position is given by a k th degree polynomial 

X(t)=a +a1t+a,t2+...+a t . 
0        16 K 

Initially we will derive the bias error for velocity obtained 

as the first derivative of a linear polynomial fit to the true position. 

Velocity from Linear Polynomial Fit 

Let N (odd) be the number of position points used in the fit. 

N+l 
Let t   correspond to the time at the midpoint {——th point) of the smoothing 

o 2 

interval. 

(See figure 1) 

X(t)=a +a,t + ...+a1t o    1 k 

i» 1 23.;.    *£L M 
-»-t 

Figure 1 
(Note that the values of the coefficients depend on the coordinate 

system. If the coefficients of the k th degree position field are given with re- 

spect to the coordinate system with origin at t then we have t =0. ) The rela- 

tionship between t and numbering of the data points by i=l, 2,... N is 

N+l 
t=t  -(-rr-) At + iAt. 

o       2 
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In terms of Legendre Polynomials the velocity at the midpoint of the 

smoothing interval, for linear smoothing is 

N 

PjU) x(i) 

X(N±L)= .- p;^. 

or by substitution for x(i) *=^ 

2(i) 

1     N+l Pl ilH N N N 
X<JT^=  N—-KIpi(i)+aiIpi{i)t + ---+akIpi(i)tk}    llc) 

At   )   PAi) i=l i=l i=l 

i=l 

vhere 

N+l 
X(i)   =   true position at time t = t0   -   (-y-) At + iAt, 

P,(i)   -   i - N+1 
I"   "   '        2     ' 

Pjd)  =  1. 

N + l 
Since t = t     - (—r—) At + iAt for convenience t can be written as 

o & 

t = t   + P, (i) At. (2C) o       i 
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Substituting (2C) Into (IC) yield« 

N N N 

xt^ .1 [•oIPl(i) + *ll Pl^^o^l^ M+" •+akIPl(i)(to+Pl(i)&t)k] 
Pj (i) 1=1 irl i=l 

1=1 

The terms inside brackets in Eqoatlon (3C) are evaluated by use of the 

following Identities characteristic of Legendre Polynomials: 

1=1 

(1) =0 

I ^-l p.afe.^ p. («j^ I ^ 
1:1 t=l i=l 

1=1 

P1
3(i)=0 

The first few terms of Equation (3C) in brackets then become 

1=1 
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\1 Pl(i) {to + PlW "\[l ^^o *L P12(Ö At]   '  *l*lpZlW> 
i=l i=l 1=1 1=1 

14 
^^^^-hboi pi{i)+ztoul pi2(i)+At2i p>]=2VoAtE n2^ 

i=i 1=X 1=1 1=1 

| P1(i)(to+P1(i)At)3.a3[3to
2/it ^ ^(i) + &t3l Pf(i)]. 

1=1 1=1 1=1 

P 
"4 ^iXVP^At^a^t/At^ ^(iMVAf ^ Pfal 

1=1 1=1 1=1 

Substituting these terms Into (3C) gives 

k^>^v^s^4f}^:^^4r>-- 
The true velocity at the midpoint is 

X^-V'Vo^Vo^4^' 

Thus,  the bias error in velocity (defined as the difference between the true 

and fitted velocities) is given for linear velocity smoothing by 

• 2 / 3N   - 7 
A*    =   a3&t   (■ 20 ■) + 4a4 'o ^ (' 

2 /3N 
20 

^-)+   ... (4C) 
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If the coefficients a , a ... «re those associated with the coordinate system 

with origin at i   (i< e., t   =0) (4C) simplifies to 

•               2 / 3N   - 7 \ 
AX = a   At   (—rr j + terms In a , a » ... 

VELOCITY FROM CUBIC POLYNOMIAL FIT 

The cubic velocity fit of a kth degree position field is given by 

I P^xd)                          2?Vi) x (i) 
^JLLL^ . ifi P'Ä + -^ -P; (^)   (so 

1   2     ' N 1     2 N 

At       YP^D AtIP3(l) 

Ul 1=1 

where 

X(l)   =  ao + a1 (to + P^t) + • • • + »k (^ + Pi^) 

' 7 - 3N2 

P3{1)   =        20 

Recalling that the first term of Equation (5C) was evaluated above. Equation (5C) 

can be rewritten as 

3N2-7 
20 [aolP3(i) + •  '  '+\ L P3(1)(t

0 + Pl(l)At ^1 ' (6C) 

I*     I P3
2(l) 'i=l l=l 

1=1 
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The following Identities «re useful In evaluating the terms In brackets. 

J P,(iH =0 

1=1 

PjdJP^O, 

1=1 

1 pl5(i,sI pl7(i,=0 

1=1       1=1 

2 
P3(i)=^3(i)+^^- Fjd). 

Using these Identities the terms In brackets of Equation (6C) become 

aoL P3(i)=0' 
1=1 

N 

1 
1=1 

^I P3<i)(VPl(i)At)=0' 

I ^(^(V?1^^2"0' 
1=1 
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N N 

l 
t 

l3 I P3(l) (to + Pl(i) At)3   =  *3 A'* I P3
2 («» 

1=1 i=l 

N 4 3?   2 
»4 L P3(l) (to + Pl{l) M)    " 4a4 'o At Zfa {l)' 

i«l 1=1 

Subatituting into (6C) yields 

i(iT-) = »i + ^z'o + ^a'o2 + ^4t0Ät2 + ... 

The bla« error In velocity for the cubic fit 1« 

Ax   %  terms in a , a., 

If the coefficients « * a.» . . . are associated with the coordinate system 
o     1 

with origin t   =0 the bias error formula simplifies to 

Ax   =   terms in a , a , . ,  . 

If velocity is obtained by a second or fourth degree polynomial fit, then 

this bias in velocity is the same as that for a linear or cubic fit respectively. 

This follows because the slope of a linear and quadratic fit are identical at the 

midpoint of the interval.    Similarly, the slope of a cubic and quartic fit are 

identical at the midpoint of the interval. 
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Acceleration from «econd dTivmtlv« of quadratic ftt 

Th« acceleration obtained from second derivative of quadratic fit ia 

calculated as 

P2(i)X(i) 

t(m)-.— p;(^) {7C) 

Jl P2
2(l) 

where 

"    N + i 

2 £ 

By writing the poeition at a kth degree polynomial and eubetituting into (7C) glvee 

k (i^L, =   J :   {^^p2(l) + ^?p2(n + pl(1)Ät)+•••+^^p2wto + pl(1>&t)k}(8c) 
At   <   P, (i) i=l 1=1 1*1 

1=1 

By using the identities 

I P2(i)=0 
i=l 

^ 2^2 

1=1 i=l 

C-8 



!**»£*^£*-teQK»ak. 

!        » 

i=l i=l 

(i)=0 

f P2(i)P]
4(i)=i^^P2

2(i) 
i=l i=l 

equation (8C) reduces to 

^^'VSV^^^-Tr-V^^^.^C-Tr)-- 

The bias in acceleration is 

Ak'    =   2a4At2(-^,    +   ua^e^-,*.. (9C) 

If the origin of the coordinate system is t   =0 then Equation (9C) simplifies to 

^   ^.2 . 3N   -13 
4L    "      14 Ax   =   2a4At ,(—'\ ,  "" )   +   terms in a,f a0, .  . 

o      8 
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The derivation of the bUt error for the second derivative of a quertic fit 

of a kth degree polynomial is derived in a manner similar to the above 

derivation.   The first term of the bias error expression will contain a, and 

t .   If the origin of the coordinate system is t   = 0 then the bias error formula 
o © 

will consist of terms that contain only the even coefficienta a,* a.» . . < 

T 

.1 
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